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Abstract
Music has been an integral part of human civilization personally and culturally. 

Historically, music has been generated using various instruments, or natural sounds like 
water drops, or unconventional musical instruments like metal or glass-wares. At present, 
technologies like Musical Instrument Digital Interface (MIDI) are used to generate music 
electronically. This research investigates the use of Generative Adversarial Networks 
(GANs) for beginner-friendly music production. This model uses Long Short Term 
Memory (LSTM) generator and Patch GAN as discriminator for the GAN architecture. 
The generator consists of input layer, embedding layer, LSTM layer and generates output 
with a softmax function. Similarly, the discriminator consists of a convolution layer, the 
output of which is averaged by the global average pooling layer, and output is generated 
by the sigmoid function. The model is trained on Maestro MIDI dataset.We make the 
process understandable by delving into the implementation specifics and outlining the 
fundamental concepts of music. Our effective model highlights the potential of GANs in 
music composition by producing cohesive music. After training for 50 epochs, the model 
exhibited a remarkable precision of 91.82 percent. This project uses the combination of 
Artificial Intelligence (AI) with music theory to provide intriguing new opportunities 
in the field of music. The model can be beneficial for different industries like gaming, 
music, entertainment, education, etc. 

Keywords: Generative adversarial networks, music generation, artificial intelligence, long 
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Introduction
Using generative models and human cues, generative artificial intelligence (AI) is 

a state-of-the-art technology that can generate text, pictures, music, and other types of 
media material. Generative AI had a tremendous increase in popularity between 2022 and 
2023, with a wide range of uses ranging from chatbots to AI-powered motion pictures 
(AlDahoul et al., 2023). Generative AI models like Codex, DALL-E, and ChatGPT have 
been receiving a lot of attention from the public. Artificial Intelligence Generated Content 
(AIGC) includes the use of Generative AI (GAI) approaches to create digital content 
using AI models, including music, graphics, and natural language. The objective of AIGC 
is to expedite the generation of high-quality content by streamlining and simplifying the 
process of content creation. AIGC is accomplished by taking human instructions, deriving 
meaning from them, and using that intended information to generate content based on its 
knowledge and understanding (Cao et al., 2023). These technologies’ generative powers 
will probably drastically change the ways in which artists generate ideas and bring them 
to life. Instead of portending the end of art, generative AI is a new medium with unique 
affordances of its own (Epstein & Hertzmann, 2023).

Gaussian Mixture Models (GMM), Hidden Markov Models (HMM), Latent 
Dirichlet Allocation (LDA), Restricted Boltzmann Machines (RBM), Deep Belief 
Networks (DBN), and Deep Boltzmann Machines (DBM) are only a few of the several 
types of Generative AI models. One of them is the Generative Adversarial Network 
(GAN), whose development has made it feasible to employ AI to produce highly realistic 
works of music, art, and other media (GM et al., 2020). GANs offer a method for learning 
deep representations without a lot of labeled training data. They do this by using a 
competitive approach utilizing two networks to derive backpropagation signals. Many 
applications, such as image synthesis, semantic image editing, style transfer, picture 
super-resolution, and classification, can make use of the representations that GANs can 
learn (Goodfellow et al., 2020).

GANs were also created to address the generative modeling issues like statistical 
error and failure to converge to exactly the optimal parameters. A generative model looks 
at a set of training samples and aims to identify the probability distribution that produced 
each one. The calculated probability distribution may then be used to create new instances 
using Generative Adversarial Networks (GANs). Computational benefits of GANs 
include the elimination of the necessity for Markov chains, the elimination of inference 
during learning, and the capacity to include a large range of functions in the model. 
The fact that input elements are not directly replicated into the generator’s parameters 
is another benefit of using a GAN, which may provide statistical benefit to them. The 
ability to depict extremely crisp, even degenerate distributions is another benefit of 
adversarial networks over Markov chain-based approaches, which require a slightly 
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blurry distribution in order for the chains to be able to mix between modes (Alqahtani et 
al., 2019).

The use of GANs for the creation of images has grown within the last several 
years. Music creation is a good application for GANs because of the unpredictable and 
random nature of music structure (Creswell et al., 2017).

The combination of creativity and innovation in the field of music and technology 
has the potential to completely change how producers, composers, and music lovers 
perceive music. The paper is driven by a great love of artificial intelligence and music, 
as well as a commitment to providing cutting edge tools and technology to artists, 
composers, and music aficionados.

In several creative fields, GANs have demonstrated incredible promise. In the 
context of developing music production and composition technology, applying GANs to 
music generation not only pushes the boundaries of AI but also advances the development 
of AI-driven music synthesis approaches.

The music industry is always changing due to shifting customer wants and trends. 
The music industry is in need of flexible and dynamic music production solutions, and 
this paper can assist meet that need. Examples of the industry’s increasing needs include 
developing soundtracks for media, background music for games, and customized music 
for marketing campaigns.

Ultimately, the paper seeks to help democratize music production, foster creativity, 
and push the limits of what technology is capable of in the field of music. In an effort 
to push the boundaries of AI music composition while remaining approachable for 
novices, this research study investigates the creative potential of GAN-based AI in music 
generation. Our goal is to help novices in machine learning and music theory understand 
complex concepts by demystifying GAN architectures and their use in autonomous music 
composition. We provide a concise introduction to fundamental musical concepts to 
bridge technical aspects with artistic nuances. Additionally, our paper includes practical 
implementations and case studies to showcase the creative potential and limitations of 
GAN-based AI music generation systems.

Literature Review
GANs in Creative Domains

Semantic picture editing, style transfer, image synthesis, image super-resolution, 
and categorization are just a few of the many uses for GANs (Alqahtani et al., 2019). 
They have also shown notable increases in power density and efficiency when employed 
in power devices including battery chargers, high-voltage DC/DC converters, and 
front-end power factor correction. GANs have been very effective in the area of picture 
generation, finding use in video, image-to-image, text-to- image, and image synthesis 
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(Li et al., 2022). Moreover, GANs have been used in a wide range of fields, such as 
banking, marketing, fashion design, sports, music, protein engineering, astronomical data 
processing, remote sensing picture dehazing, and crystal structure synthesis (Dash et al., 
2021).

In terms of creative domains, following are some examples of applications of 
GANs:
Generate Realistic Photographs

With applications in many different domains, GANs have demonstrated 
considerable potential in image production. (Chi et al., 2022) gives a thorough 
introduction to GANs in image production, emphasizing how they can increase classifier 
accuracy and data balance. (Yang et al., 2017) presents LR-GAN, a model that takes 
scene structure and context into account while creating realistic images. (Marchesi, 
2017) offers a Deep Convolutional GAN-based optimized image generating technique 
that produces photorealistic, high-resolution images. (Meng & Guo, 2021) goes on to 
investigate the effectiveness of GAN models in the creation and categorization of images, 
concluding that GANs with convolution layers perform better than other models in these 
domains. Together, these researches highlight the potential of GANs in photo production, 
especially when it comes to enhancing the realism and quality of images.
Figure 1 
Progress visualization of GANs from 2014 to 2017. The images, in order, are from 
(Goodfellow et al., 2014), (Radford et al., 2015), (Liu & Tuzel, 2016) and (Karras et al., 
2018)

Image-to-Image Translations
New developments in GAN-based image-to-image translation have spawned 

the creation of multiple creative models. (Yu et al., 2019) introduced SingleGAN, a 
technique that achieves improved performance for multi-domain image translation by 
using a single generator. (Tang et al., 2022) presented SelectionGAN, a model for guided 
image-to-image translation problems that integrates semantic assistance to yield high-
quality output. InstaGAN, introduced by (Mo et al., 2019), enhances multi-instance 
transfiguration by utilizing instance data and a context-preserving loss. (Lata et al., 2019) 
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illustrated the significance of hyper-parameter adjustment on model performance by using 
Conditional GANs for image-to- image translation. Together, these works demonstrate 
the promise of GANs in picture translation as well as the variety of methods that may be 
applied to improve their efficiency.
Figure 2
Examples of image-to-translation using GAN (Yu et al., 2019)

Text-to-Image Translation
Figure 3
Generated Images corresponding to the user input (Zhang et al., 2017)
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Many researchers explored the use of GANs for text-to- image translation, with 
(Perumalraja et al., 2022) specifically proposing a Stacked GAN approach for this task. In 
order to create high-resolution, photorealistic photographs, their method consists of two 
stages: the first stage produces low- resolution photos, and the second step refines them.
Face Aging

The application of GANs for facial aging has been investigated in a number of 
studies. Contextual GANs were introduced by (Liu et al., 2017) and take into account the 
transition patterns in aging faces. (Antipov et al., 2017) used an “Identity- Preserving” 
optimization technique to concentrate on maintaining the original identity in aged faces. 
(Liu et al., 2018) presented a DCGAN-based model that creates robust and lifelike face 
images by mapping a face to a latent vector and age-conditional vector. (Genovese et 
al., 2019) advanced this work by presenting a framework for understanding GANs, 
dissecting the model’s internal organization, and demonstrating that general purpose 
picture datasets may be used to teach the aging transformation. Together, these researches 
show how GANs can be used to address face aging, with particular emphasis on identity 
preservation, transition pattern capture, and realistic image generation.
Figure 4
Face Aging according to age using GAN (Antipov et al., 2017)

Super Resolution
The application of GANs for super resolution has been investigated in a number 

of research. Many discovered that GANs can improve picture details and create visually 
pleasing frames, while some research like (Gopan & Kumar, 2018) pointed out a 
somewhat lower PSNR (peak signal-to-noise ratio). (Liu et al., 2019) added a natural 
picture gradient prior and a style map from a visible image to further enhance GAN-based 
super resolution. Building on this work, (Xue et al., 2020) achieved outstanding results 
in image super resolution using a GAN model with residual blocks and a Wasserstein 
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distance loss function. Last but not least, (Liu et al., 2019) showed how GANs might 
improve the resolution of coherent imaging systems, especially in lens-less on-chip 
holographic microscopes.
Figure 5 
Increased Resolution of an Image using GAN (Ledig et al., 2017)

Systems for Automated Music Generation
Many computational approaches and techniques have been explored in the 

exploration of automated music generating systems to endow machines with musical 
creativity. A diverse blend of creativity and technology is reflected in the landscape of 
automated music generation systems, which range from rule-based algorithms to neural 
network structures.
Rule-Based Systems

Both (Goodman & Spangler, 1999) and (Friberg, 1991) created rule-based systems 
for generating music; former concentrated on transforming written compositions into 
performances, while latter concentrated on harmony and real-time accompaniment. 
(Bach, 2008) extended this work by using a Macintosh computer to implement the 
rules in Lisp. A more versatile and broad method was presented by (Lichtenwalter et 
al., 2009), who offered a system that generates rules from a training set of musical data 
using learning algorithms. Together, these investigations show the promise of rule-based 
systems for producing music, and Lichtenwalter’s method presents a fruitful direction for 
further investigation.
Markov Model Systems

The application of Markov models in music generating systems has been the 
subject of several studies. Markov chains and hidden Markov models are used by De 
(Merwe & Schulze, 2011) and

(Thornton, 2009) to record and reproduce musical genres. In order to improve 
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long-term coherence, (Herremans et al., 2015) expands on this work by putting out a 
strategy for enforcing structure and repetition in music. (Li et al., 2019) adopts a novel 
strategy and surpasses conventional approaches in music play sequence prediction by 
employing a mixed hidden Markov model. Together, these researches show how Markov 
models may be used to generate music for applications in sequence prediction and style 
replication.
Deep Learning Models

The transformer model and GANs have been the subject of recent research 
studying the application of deep learning in music production (Min et al., 2022). These 
models have demonstrated potential in deciphering linkages throughout lengthy musical 
sequences and acquiring knowledge of compositional conventions (Cheng et al., 2020). 
Deep learning for music creation does have several drawbacks, though, such as the 
inability to directly regulate production and the propensity to replicate the training set 
without genuine innovation (Briot & Pachet, 2017). Deep learning has been effectively 
used to generate music utilizing raw audio recordings and frequency domain data, despite 
these obstacles (Bhave et al., 2019).
Evolutionary Computational Systems

Evolutionary computing has been investigated in a number of research related to 
music generating systems. (Weale & Seitzer, 2003) concentrated on utilizing a genetic 
algorithm to generate contrapuntal music, whereas (Chen, 2007) created an interactive 
system that generates personalized music depending on user choices. (Wilson & Fazenda, 
2016) introduced evolutionary computation to intelligent music composition, combining 
user feedback and domain knowledge. (Yiiksel et al., 2011) employed evolutionary 
algorithms and neural networks to autonomously compose music. Together, these 
experiments show how evolutionary computing may be used to produce a wide range of 
customized musical compositions.
Research Gap

The GANs architecture has been vastly used for image generation and 
manipulation, but very little work has been done with its utilization in music generation. 
GANs are generally used with the same architecture of models for both generator and 
discriminator. This study tries to bridge that gap and explore the usage of GANs in music 
generation with LSTM as generator and Patch GAN as discriminator.

Research Methodology 
Music Properties and notations in GAN-Based Music Generation 

It is essential to comprehend the basic notations and characteristics of music in 
order to interact with AI music production in an efficient manner. This section aims to 



Far Western Review, Volume-2, Issue-1, June 2024, 1-25

Generative Adversarial Network Based Music Generation

9

simplify these ideas for both novices and experts in order to promote understanding 
and make it easier for people to get started with AI-powered music production. People 
can better manage the complexities of AI music generation if they understand the 
fundamentals of musical notation and the traits that go along with it. We hope that with 
this core understanding, users may investigate the nexus between artificial intelligence 
and music theory, enabling them to take advantage of technological breakthroughs in 
music production and composition.
Melody

In music, a series of notes and rests that are heard as a unified whole is referred 
to as a melody. It is the principal linear component that conveys a composition’s central 
melodic concept or theme. Pitch, rhythm, and contour combine to form melody, which 
produces a recognizable and memorable series of sounds.

For novices, melody comprehension is figuring out how individual note pitches 
relate to one another and change over time. A melody is often made up of notes placed in 
a certain order to convey a feeling of musical direction and emotion.

In essence, melody is the heart of a musical piece, providing listeners with a focal 
point and emotional resonance. Learning to recognize, value, and compose melodies is 
essential for novices who want to get a better comprehension and bond with music.
Notes
Figure 6
Note of a melody

A note has two properties; pitch and duration. The pitch indicated how high or low 
the note sounds. It is directly correlated with the frequency of a sound i.e. the higher the 
pitch of a note, higher is the frequency of that sound. The duration of a note, which varies 
depending on the kind of note, is the amount of time it is played. In contemporary music, 
the whole note has the longest length.
Octave
Figure 7 
An octave starting at C note
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An octave, often known as a perfect octave, in music is a range of notes that fall 
between two notes, each of which vibrates at twice or half the frequency of the other. In 
the western musical scale, there are 12 notes in every octave.
Scientific Pitch Notation (SPN)
Figure 8 
Full piano keyboard (all 88 keys) showing the different octaves [55]

Scientific pitch notation (SPN), often referred to as international pitch notation 
(IPN) or American standard pitch notation (ASPN), is a technique for indicating musical 
pitch that combines a musical note name (with accidental if needed) and a number 
identifying the pitch’s octave. For example, to denote a C note at 4th octave, it is denoted 
as C4. Similarly, D3 to denote a D note at 3rd octave. C4 is called the middle C, denoting 
the mid of the octave cale and the total available number of octaves depends on the 
instrument used to produce the sound. For example, the organ has one of the widest 
ranges of octave span, which is eleven.
MIDI Note Notation
Figure 9
88-notes classical keyboard-Note names and MIDI numbers [57]

While it is convenient for humans to infer notes and their octaves using the 
Scientific Pitch Notation, the process can be made easier for computers by just using 
integers. MIDI is one among such notations generally used for digital music for playing, 
editing and recording music. In MIDI notation, the notes are mapped to numbers. 
According to MIDI notation, MIDI note 0 is assigned to C−1 (which is five octaves below 
C4 or Middle C and the lowest note on the two largest organs in the world; however, 
its overtones are audible), MIDI note 21 is assigned to A0 (the bottom key of an 88-key 
piano), MIDI note 60 is assigned to C4 (Middle C), and MIDI note 108 is assigned to C8 
(the top key of an 88-key piano).
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Note Values and Beats
A beat is the fundamental unit of time used to measure cycles in music theory. The 

beat is commonly described as the rhythm that a listener would tap their toes to when 
listening to music. Similarly, note values tell us how many beats a note gets, or how long 
the note will last. A note value indicates the relative duration of a note, using the texture 
or shape of the notehead (♫), the presence or absence of a stem, and the presence or 
absence of flags/beams/hooks/tails. The following figure shows how many beats every 
note is worth.
Figure 10 
Relation between note values and beats [56]

Bar and Time Signature
Figure 11
Bar lines and Time Signature 

Bar is a segment of music bounded by vertical lines, known as bar lines, usually 
indicating one of more recurring beats. Another important thing to learn in music theory 
is time signature in order to judge the output of the neural network. To check if the 
network is able to generate music in 4/4, 3/4, because different time signatures of the 
melody have different tone/accent/vibe. The time signature is written in fractional forms 
like 4/4, 3/4 etc. The numerator in these fractions denotes the number of beats there are 
in a bar and the denominator denotes the note value which is equal to one beat. The time 
signature 3/4 means that there are 3 beats in a bar and each beat is a quarter note.
Key

The key of a musical piece is the group of pitches or scales that form the center of 
musical composition in western classical music. A key consists of tonic and mode, e.g.
C + Major = Cmaj
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D + Minor = Dmin, where tonic being the note itself and mode being either major or 
minor. The major tone is usually construed as being happy sounding while the minor tone 
is sad sounding. With 12 notes and 2 modes, we altogether have 12 keys.
Transposition

The act of shifting a group of notes up or down in pitch by a consistent interval is 
referred to as transposition in music. This changes the key of the music, but the musical 
content remains the same.
GAN Architecture for Music Generation

The GAN Architecture for Music Generation consists of LSTM Generator, Patch 
GAN Discriminator and a GAN framework that combines generator and discriminator 
into a single model for training.
LSTM Generator

The generator is a neural network with an LSTM foundation that creates musical 
sequences. It generates a series of music data from an input sequence. The generator 
is composed of an embedding layer, an LSTM layer, and a dense layer with softmax 
activation that is fully coupled. Visual representation of the generator model is given in 
figure 12.
Figure 12 
LSTM Generator Model Diagram

Input data is transformed into dense vectors of a predetermined size (latent dim) 



Far Western Review, Volume-2, Issue-1, June 2024, 1-25

Generative Adversarial Network Based Music Generation

13

by the embedding layer. The embedded input sequence is processed by the LSTM layer, 
which also records temporal dependencies. A probability distribution across the set of 
potential musical events (such as pitches) is produced by the dense layer.
Patch GAN Discriminator

The discriminator distinguishes between artificially created and real music 
sequences using a patch-based discriminator. Visual representation of the discriminator 
model is given in figure 13.
Figure 13
Discriminator Model Diagram

It receives input in the form of musical sequences and produces a probability 
reflecting the authenticity of the input. The discriminator uses a dense layer with sigmoid 
activation and a convolutional neural network (Conv1D) with leaky ReLU activation 
followed by global average pooling. The local patterns of input music sequences are 
captured by the convolutional layers. The spatial dimensions of the features are shrunk by 
the global average pooling layer. The probability that the input sequence is real is shown 
by the single output that the dense layer generates.
GAN Class

The generator and discriminator are combined into a single training model by 
the GAN class. In training, the discriminator’s goal is to properly discriminate between 
genuine and produced sequences, while the generator attempts to create music sequences 
that are realistic enough to trick the discriminator. Both the discriminator and the 
generator are trained adversarially: the discriminator’s loss is minimized to enhance its 
capacity to discern between created and genuine music, while the generator’s loss is 
minimized to produce more realistic music. Visual representation of the whole GAN class 
is shown in figure 14. 
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Figure 14 
GAN Model Diagram

Dataset
Maestro MIDI dataset was utilized to train the models since it provides an 

attractive resource for training music creation models, the. With more than 200 hours of 
recordings from the International Piano-e-Competition, MAESTRO offers a large body 
of work covering a wide range of musical styles and levels of difficulty. Models are able 
to learn from a wide range of musical patterns and subtleties because of this large and 
diverse dataset. The dataset captures both the rich sound and the specific note information 
with high temporal resolution (~3ms) and pairs it with well-matched MIDI data in CD-
quality audio. Models can efficiently learn the complex link between musical notation and 
its accompanying sound because of this exact alignment, which is essential for producing 
musically cohesive compositions. 

Every composition in MAESTRO has an annotation indicating the author, title, 
and performance year. Because of the comprehensive metadata available, models may 
be able to produce music that sounds realistic and include contextual information into 
the process, which might result in the development of compositions with stylistic and 
structural traits consistent with the information supplied. This also makes MAESTRO 
very suitable for the future work on the project, more of which is discussed in the later 
section of the paper.
Data Pre-processing and training

The goal of the data preprocessing part is to get note sequence and target data from 
the pitch information in the MIDI files in the form of tensors. To achieve this, from a list 
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of MIDI files, each file is iterated and is passed to the preprocess_midi function. This 
function reads a MIDI file, extracts note information, and quantize time steps and returns 
a list of dictionaries, where each dictionary contains the following keys:

 - pitch: The MIDI pitch of the note.
 - velocity: The velocity of the note (loudness).
 - start: The starting time step of the note.
 - end: The ending time step of the note.

The result from the function is stored in a list of notes. From the list, another list of 
valid notes is formed, which is a list of notes that have a pitch value from 0 to 88.

The list of valid notes and sequence length (64 in this implementation) were 
passed to the prepare_sequences function. Because the list was too big for the system 
memory of the particular computer used to process the data, a batch size was also passed 
as parameter to the function and a helper function, prepare_sequence_helper was used 
in order to process the sequences in batches. With the help of the helper function, the 
prepare_sequence function returns sequences and targets, where sequences is a list of 
tensors, where each tensor represents a sequence of notes and targets is a list of tensors, 
where each tensor represents the target sequence (shifted by 1 step).

After the music data is processed, the generator is provided with noise data with 
similar dimensions as the processed data. Out of this noise data, the generator tries to 
produce some results. This result is evaluated by the discriminator. Binary_crossentropy 
function computes the loss, which indicates how different the generated result is from the 
actual music. The generator makes changes and tries to bring the result of loss function 
closer to 1. The weights of the two models are optimized by Adam optimizer.

Results and Discussion
Results

The implementation for the proposed system was done on a basic level and 
consisted broadly of four steps: data preprocessing, model architecture, model training 
and music generation. The following section covers each step in brief detail.
Model Architectures

As mentioned in the previous section, the model architecture consists of three 
components, a LSTM Generator, a discriminator and a GAN class that combines the 
generator and discriminator enabling them to train adversarially.

The LSTM Generator is a sequence-to-sequence model that makes use of an 
LSTM architecture to produce music. Three layers were implemented for the generator: 
embedding layer, LSTM layer and a dense layer.

Integer input representing musical pitches is sent into the Embedding layer, along 
with a unique token for padding. This layer uses an embedding matrix to convert each 



Far Western Review, Volume-2, Issue-1, June 2024, 1-25

Generative Adversarial Network Based Music Generation

16

integer to a dense vector of size latent_dim (128). In this way, internal representations for 
every pitch may be learned by the model.

The LSTM layer then processes the sequence of embedded pitches. The model uses 
a single LSTM layer with units

(256) memory cells. The return_sequences=True argument ensures the output 
retains the sequence structure, allowing the network to model long-term dependencies 
between pitches.

The output of the LSTM layer is projected by the Dense layer onto a vector of size 
NUM_PITCHES + 1 (88+1). The additional unit compensates for the input’s padding 
token. The output layer then applies a softmax activation function to transform the logits 
into probabilities, which indicate the possibility of each potential pitch at the following 
step in the musical sequence.

The discriminator used is a patch-based discriminator which focuses on local 
patches instead of entire sequences for more fine-grained analysis. It uses few layers 
for efficiency and faster training. The activation functions that are used, Leaky ReLU 
and sigmoid, promote gradient flow and provide a probabilistic interpretation of output 
respectively.

The discriminator consists of 4 layers; input layer, convolutional layer, global 
average pooling layer and dense layer.

Music sequences are accepted as input by the input layer, which anticipates a shape 
of [batch_size, sequence_length, features]. For consistency, an additional batch dimension 
is introduced if just one sequence (shape [31, 89]) is given. Features are extracted by the 
convolutional layer from certain regions within the music stream. With a given kernel_
size, it applies 1-dimensional filters. “Same” padding is used to maintain input length and 
for non- linearity, leaky ReLU activation is used.

By averaging throughout the full sequence, the global average pooling layer 
compresses feature maps.

It reduces dimensionality while capturing global information.
Discriminating decision of the model is represented by a single output value that 

is projected from pooled features by the dense layer. For output constraint, it employs a 
sigmoid activation function between 0 (fake) and 1 (real). The MusicGAN class creates 
a GAN model using TensorFlow’s Keras API and houses the generator and discriminator 
networks. The initialization function of the class initializes the model with the provided 
generator and discriminator. The class also has a compile function which configures the 
model’s compilation, specifying loss function and optimizer for training. The train_step 
function of the MusicGAN class implements a single training step, handling both 
generator and discriminator training. The generate function of the class generates new 
music sequences using the trained generator model.
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Training 
The primary container for the whole GAN system is the MusicGAN class, which 

derives from tf.keras.Model. It has two essential submodels: Generator and Discriminator.
The compile function sets up the GAN model’s necessary parameters prior to 

training. It clarifies two important components:
• Loss Function: This function calculates the penalty for the model’s predictions 

deviating from the desired outcome. The model makes use of the binary_
crossentropy function in this instance. Tasks requiring binary classifications, such 
as determining if a musical sequence is authentic or fraudulent, are a good fit for 
this function.

• Optimizer: Based on the determined loss values, this method is essential in 
adjusting the internal parameters (weights) of the model. The given code makes use 
of the Adam optimizer, a popular and effective neural network training tool.
Within the GAN training process, the train_step method captures the fundamental 

reasoning of a single training iteration. This process may be distilled into a few essential 
steps:

• Data Preparation: To provide real music sequences for the generator and 
discriminator to refer to, the model extracts them from the training set. The model 
also produces random noise to provide the generator ideas for where to begin when 
creating musical sequences.

• Generator Training: In an effort to replicate the style and organization seen in the 
actual music data, the generator uses the noise that has been supplied to produce its 
own musical sequences. Subsequently, the model employs the binary_crossentropy 
function to compute a loss (gen_loss). This loss measures the difference between 
the targeted result (ones, representing authentic music) and the discriminator’s 
predictions for the generated sequences (preferably near ones, representing actual 
music).

• Discriminator Training: Both the created and actual music sequences are evaluated 
independently by the discriminator. For every sequence, it produces a probability 
score that represents how likely it is to be true. Disc_loss is another loss that 
is computed with the binary_crossentropy function. This loss represents the 
discrepancy between the genuine labels and the discriminator’s actual predictions, 
which are zeros for bogus sequences and ones for authentic sequences.

• Back-propagation and Optimization: The generator and discriminator losses’ 
gradients (rates of change) with respect to their individual internal parameters 
(weights) are computed by the model via a process known as backpropagation. 
These gradients are used by the selected optimizer, Adam in this instance, to update 
the weights of the two models. With this version, the discriminator’s capacity to 
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distinguish between actual and produced sequences will be improved while the 
generator’s ability to produce realistic music that fools the discriminator will also 
be improved.

• Loss Reporting: The model reports the generator and discriminator losses after 
every training phase. These losses serve as vital indicators for tracking the entire 
training process’ development and assessing its efficacy.
The real training starts when the model is set up and each training step is specified. 

This is made easier by the tf.keras.Model class’s fit function. For a predetermined number 
of epochs (full runs of the dataset), this technique iterates over the training dataset. The 
train_step technique is run several times in each epoch, progressively fine- tuning the 
discriminator and generator in an adversarial fashion until the generator reaches its goal 
of producing music that is imperceptible to the astute discriminator as genuine music.
Discussion
Implications for the Industries

Customizable music generating systems might have a big influence on a lot of 
different industries:

1. Music Industry
• Composition assistance: Using the technique, songwriters and composers 

can get beyond writer’s block, come up with new takes on well-known 
subjects, or try out novel approaches and genres.

• Production efficiency: Using the technology, producers may swiftly produce 
backing tracks, adapt songs for different audiences, or customize songs for 
particular listeners.

2. Entertainment Industry
• Film and video game scoring: Composers can save time and resources by 

having the system quickly produce background music that suits the mood 
and concept of a scene.

• Personalized soundtracks: Custom soundtracks that adjust to the audience or 
surroundings may be made for museums, amusement parks, and other types 
of venues.

• Interactive experiences: AI-generated music may be used to create dynamic, 
immersive soundtracks for games and virtual reality experiences that react to 
player activities.

3. Education and Research
• Music education: If students give the system some beginning points and 

explore other options, they can experiment with writing and arranging music.
• Music therapy: By employing the technology to customize music to each 



Far Western Review, Volume-2, Issue-1, June 2024, 1-25

Generative Adversarial Network Based Music Generation

19

patient’s unique requirements and tastes, therapists may make music 
treatments more unique for their patients.

• Musicology: By examining the system’s produced outputs, researchers may 
learn about composing methods, musical theory, and the development of 
musical styles.

4. General Public
• Accessibility and creativity: The method encourages creativity and self-

expression by enabling anybody to compose music, regardless of experience 
or aptitude.

• Personalization and entertainment: Users may create personalized music 
for activities like meditation, relaxation, or just to enjoy the novelty of AI-
generated music.

Challenges and Future Directions 
A unique set of challenges arises while training Generative Adversarial Networks 

(GANs) for music production, especially when restricted computing resources are 
available. A major challenge is determining the ideal hyperparameters for the model’s 
performance.

Because GANs are infamously sensitive to hyperparameter settings, precise 
modifications are necessary to get desired results, such as realistic music creation. This 
procedure becomes more laborious in contexts with limited resources since it might be 
computationally costly to explore a wide variety of hyperparameter combinations.

In addition, when there are little resources available, the training procedure itself 
presents difficulties. To manage the intricate computations needed to produce realistic 
music, training GANs frequently demands a large processing power. A lack of resources 
might cause training times to increase, which can impede the process of development and 
perhaps lower the overall quality of created music.

Generative Adversarial Networks, or GANs, are becoming a very useful tool for 
creating music. Two major issues with the paradigm of model in this paper, though, are 
that there is little variation in the outputs that are produced and there is little control over 
the musical style. In order to overcome these constraints, this research suggests two next 
directions:

1. Enhancing Dataset Diversity for Richer Outputs: For GANs to produce a variety 
of outputs, they must be trained on a larger spectrum of musical genres and 
styles. A wider range of musical genres, including jazz, world music, folk, and 
experimental music, should be included in the training set to give the model a 
deeper comprehension of musical structures and patterns. The generator network 
can now create outputs that are more than just variations on a single theme thanks 
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to this increased exposure, which enables it to catch the subtleties of many musical 
styles. Including a variety of musical components within a genre might further add 
to the model’s knowledge base. By including changes in tempo, instrumentation, 
and composing methods, the GAN may produce music that accurately captures the 
complexity of a certain genre.

2. Leveraging Keyword Labels for Style-Based Generation:The capacity to make 
music based on style keywords would be a big development, even if the existing 
model can generate music simply feeding it starting notes. By adding keyword 
labels to the training dataset, this may be accomplished. These designations could 
include musical styles (like “jazz,” “heavy metal”), emotional states (like “upbeat,” 
“melancholy”), or even particular instruments (like “flute solo”). The connections 
between these keywords and the associated musical elements might then be 
taught to the model. The user might enter a list of keywords and, if desired, a brief 
musical seed throughout the generating process. The generating  process  would  
then  be  guided  by  the information provided by the GAN, resulting in music that 
is coherent and musically pleasing while adhering to the designated style. This 
would provide consumers more creative freedom and allow them to customize the 
generated music to suit their own requirements and aesthetic preferences.

Conclusion
The potential of Generative Adversarial Networks (GANs) for music production 

was investigated in this study. After
50 training epochs, the implemented model had an astounding accuracy of 91.82%, 

indicating its efficacy in picking up the subtleties of musical data.
In addition to its remarkable accuracy rating, the produced music had a high level 

of coherence. This shows that the model can not only understand the basic principles 
of music theory but also pick up on the minute details that add to a piece’s emotional 
resonance and distinctive style. This ability of GANs to replicate these details shows 
how they can produce music that is both technically accurate and artistically appealing to 
listeners.

All things considered; this study’s results show how much GANs may be used 
to advance the field of music creation. GANs have the potential to produce high-
fidelity, stylistically varied music that can enthrall listeners and open up fresh creative 
opportunities in the music industry with more research and development.
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