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ARTICLEINFO ABSTRACT

Key words: In Nepal, carbon sequestration potential of Sal (Shorea robusta) in community forests
Allometric equation (CFs) is understudied. This study assessed aboveground biomass (AGB) and
Biomass belowground biomass (BGB) and estimated the carbon stock potential of Sal/trees in
Carbon stock Neureni-Chisapani CF, Makawanpur district, Central Nepal. Data were collected

Climate change

- from 16 circular plots of 250 m? each, established across four blocks. All Sa/trees with
Community forest

DBH = 5 cm were measured. The AGB was calculated by using allometric equations
and BGB by root-shoot ratios, and the total biomass was converted to carbon stock
using the standard carbon fraction. Environmental factors, including altitude, soil pH
and rock cover, were recorded to find their relationships with the carbon stock. The
forest stored an average of 248.97 t/ha of AGB, 64.72 t/ha of BGB, 313.69 t/ha of total
biomass and 146.96 t/ha of carbon. A total of 13.87 m?/ha of basal area was calculated.
Block-level carbon ranged from 137.79 to 158.12 t/ha, though ANOVA showed no
significant difference (p > 0.05). The carbon stock strongly correlated with DBH,
height and basal area; however, Generalized Linear Model showed unimodal and
curvilinear relationships with altitude, soil pH and rock cover. Thus, these results
confirm CFs as good carbon reservoirs, which helps to develop climate change
mitigation strategies and sustainable forest management policies.

atmospheric interactions (Anaya et al.,, 2009), along
with the carbon stocks contributed by plants

The increasing level of atmospheric carbon dioxide (Ketterings et al., 2001).
(CO:y) is the major cause of global climate change (Kabir
et al., 2023). Vegetation and soil are viable sinks of
atmospheric carbon (Lal, 2004; Smith, 2004), and the
significant role of plants in sequestering carbon into
biomass and soil is central to climate change
mitigation strategies (Rahman, 2013). The goal of
increasing the carbon storage can be accomplished
through the protection and conservation of forests, as
about 43-50% of the dry biomass of trees is carbon
(Malhi, et al. 2002). The capacity of forests in storing
carbon varies according to the geographical location,
plant species and age of the stand (Ma et al., 2015).
Assessment of aboveground biomass (AGB) can help
to depict the relationships of biosphere and

INTRODUCTION

AGB and belowground biomass (BGB) can help
estimate the total carbon securely stored in forests
(Hamburg, 2000). Globally, forests store about 80% of
terrestrial aboveground carbon (Houghton, 2005) and
over 40% of terrestrial belowground carbon (Pan et al.,
2011). In addition, forests and soil, which store carbon,
increase biodiversity and also minimize the risk of soil
erosion, providing a host of agricultural and
environmental benefits (Alemu, 2014). However, the
potential of forests in developing countries, like Nepal,
is still underexplored due to insufficient localized data
and analysis (Lamsal et al., 2018).
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Estimating carbon pools in existing forests provides
baseline data of sequestrated carbon over time (Cook-
Patton et al., 2020; Shrestha and Singh, 2008), and to
quantify the stored carbon in the forest ecosystem,
temporal carbon stocks under various forest types
must be assessed (Leighty et al., 2006; Thomas Nord-
Larsen, 2024). Of the various other emission reduction
strategies, biological sequestration of CO: by forest is
considered the most cost-effective approach (Banskota
et al., 2008; Stern, 2007). The tropical forests contribute
approximately 40-50% of all terrestrial carbon stocks,
although they occupy only 7-10% of the global area
(Cuni-Sanchez et al., 2021; Raha et al., 2020). Almost
half of Nepal's tropical forests are dominated by Shorea
robusta (Sapkota et al., 2010) and act as an important
sink for the carbon store (Webb and Sah, 2003).

The community forests (CFs) of Nepal are the best
known participatory programme (Ghimire and
Lamichhane, 2020). They have contributed to a good
increment in biodiversity and substantial improvement
in forest cover, playing a significant role in carbon
sequestration (Ayer et al.,, 2022; Rawal and Subedi,
2022). Furthermore, they have sufficient capacity to
store carbon in the form of biomass (Tripathi et al.,
2017) and are considered as the most effective global
forest management system (Laudari et al., 2024).
Despite this, comprehensive and localized data remain
scarce, particularly on central Nepal, where
community-managed forests are ecologically diverse
and under various scientific management systems.

Numerous studies have highlighted the role of forests
in carbon sequestration, both globally (Gorain et al.,
2025; Grafton et al., 2021) and regionally (Charmakar et
al., 2021; Joshi et al., 2023; Joshi et al.,, 2021b). Yet,
local-scale species-specific assessments remain poorly
represented. The carbon dynamics of Shorea robusta
within community-managed forests under scientific
management system have not been adequately
quantified. This study links biomass estimates to
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ecological attributes to advance our understanding of
carbon sequestration in tropical CFs, underscoring
their role in mitigating the impact of climate change.
This research addresses these gaps by providing
empirical evidence from Neureni-Chisapani CF in
Makawanpur district in central Nepal, thereby
contributing to the national carbon database and
carbon market initiatives.

This study was conducted to assess the AGB and BGB
and estimate the carbon sequestration potential of Sa/
trees in Neureni—Chisapani CF. It aims to (i) quantify
AGB and BGB and carbon stock of Sa/trees, (ii) analyse
variations in carbon stock potential among four forest
blocks and (iii) evaluate the relationships between
carbon stock, structural attribute (DBH, height, basal
area) and environmental variables (altitude, soil pH,
rock cover).

MATERIALS AND METHODS
Study area

The research was carried out in Neureni—Chisapani CF,
located in Hetauda Municipality—07, Makawanpur
district, Bagmati province, central Nepal (27°10" to
27°40' N and 84°41’ to 85°31’ E). The district ranges in
elevation from 166 metres above sea level (masl) in the
south of the Churia hills to 2,584 masl in the north of
the Mahabharat hills (Subedi et al., 2019). The Churia
range is dominated by the tropical and subtropical
climates, while the Mahabharat range is dominated by
the temperate climate (Bhattarai et al.,, 2009). The
forest lies within the subtropical belt, at elevations
ranging from 466 to 630 masl, with slopes ranging from
5° to 45° with the southern aspect, and covering an area
of 71.30 hectares (ha) (CFOP, 2025). The annual rainfall
ranges from 1,300 mm to 1,600 mm, the temperature
ranges from 15 °C to 32 °C, and soil is predominantly
stony, gravelly boulder and red (CFOP, 2025).
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Figure 1: Study area and sample plots in the forest blocks
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The forest is dominated by Sal trees (Shorea robusta),
and the other associated tree species include Chilaune
(Schima wallichi), Karma (Adina cardifolia) Asna
(Terminalia elliptica) and Kangiyo (Grevillea robusta).
This forest was handed to forest user communities in
2047 B.S. (DFO, 2007) and has been under the scientific
forest management programme since 2015. For
management purposes, the forest, occupying an area
of 71.3 ha, was divided into four blocks, based on
physiographic conditions, like creeks, small streams
and roads (CFOP, 2025).

Sampling design

The forest was stratified into four management blocks,
with approximately equal areas and physiographic
conditions (CFOP, 2025), namely block A (17.34 ha),
block B (18.43 ha), block C (16.4 ha) and block D (19.13
ha) (CFOP, 2025). The sampling intensity of the area of
the forest was calculated, which was 0.5% of the total
forest area, which is consistent with the carbon
assessment guidelines for community forests (Subedi
et al., 2010; Joshi et al., 2021a). We used 0.5% sampling
intensity because the forest has the homogeneous
stand of Shorea robusta, and the estimates was
adequated and reliable (Joshi et al., 2021a; Regmi et
al., 2021). A total of 16 sampling plots were established
using the ArcGIS software, where each block consisted
of a total of four concentric circular plots of radius 8.92
m (area = 250m?) (ANSAB, 2010). All Sal trees with
DBH = 5 cm, tree trunks inside the plot but branches
outside, and trees in the borderline with at least 50% of
the trunks inside the plot were recorded for biomass
and carbon stock estimation (ANSAB, 2010).

Field data collection

A survey was carried out during January-June 2025 for
obtaining biophysical measurements of individual
trees, like diameter at breast height (DBH) and height.
DBH was measured using a diameter tape, and tree
height with a Suunto clinometer. Other required site
details, such as altitude, soil pH and rock cover, were
recorded for each plot. Altitude was recorded using
GPS. Soil pH was measured using a portable digital pH
meter to a depth of 20 cm. Rock cover was visually
estimated as a percentage of ground surface. However,
slopes less than 10% (5.74°) were considered
insignificant and true horizontal length (Goslee et al.,
2016).

Biomass estimation and net carbon content

The biomass of each tree is in different forms, such as
stems, branches, leaves and roots. The AGB includes
stems, branches and leaves, whereas the BGB includes
roots. Biomass was predicted by non-destructive
methods. After obtaining the total biomass, the carbon
stock was estimated using specific relation as
specified by the Intergovernmental Panel on Climate
Change (2006).

Aboveground biomass

The total AGB was calculated by using a widely-
applied allometric equation (Chave et al., 2005).

AGB = 0.0509 X pD?H
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Where,

p = Wood-specific gravity (g/cm®) [0.88 g/cm® for Sal
trees (Bohara et al., 2021)]

D = tree DBH (cm)

H = tree height (m)

The obtained AGB values for each individual weight
(kg) of sampling plot were summed up and divided by
the sampling plot area (250 m?). The biomass stock
density value thus obtained in kg/m? was then
converted to t/ha by multiplying it by 10.

Belowground biomass

BGB was estimated by multiplying AGB 0.26 times
(Eggleston et al., 2006).

BGB = 0.26 x AGB (t/ha)
Total biomass

Total biomass of the plant was determined by adding
AGB and BGB (Djomo and Chimi, 2017)

Total biomass (TB) = AGB + BGB

Net carbon content

To estimate carbon stock, the total biomass obtained
was multiplied by default carbon fraction of 0.47
(Eggleston et al., 2006) as:

Total carbon stock = Total biomass x 0.47
Basal area estimation

The basal area (BA) of the tree was calculated using

the basic formula (Rana et al. 2008).

2
Basal area (BA) =@

Statistical analysis

The data collected were managed in MS Excel
spreadsheet, and R version 4.1.1 (R Development Core
Team, 2020) was used for statistical analysis and
graphical representation. ANOVA was conducted to
compare the differences in the carbon stocks in the
different blocks of the forest. A Pearson correlation test
was performed to measure the strength of relationship
among the key forest structural variables (DBH, tree
height and basal area) and carbon stock at 0.05
confidence level. The effect of environmental factors
(altitude, soil pH, basal area and rock cover) on carbon
stock were calculated through regression analysis.
Generalized Linear Model (GLM) (LM: McCullagh &
Nelder, 1989; Dobson, 1990) was used to show the
relationship between the response (carbon stock) and
predictor variables (environmental factors). A quasi-
Poisson error distribution with F-test was used to
handle the overdispersion of the deviance (Crawley,
2007). The significance of each model was tested
against the null model, as well as with each other, up
to the third-order polynomials.

RESULTS
Biomass estimation

The estimated average AGB in the forest was 248.97
t/ha. Biomass varied across the four blocks, with block
A recording the highest AGB (267.00 t/ha),
consecutively followed by block D (247.57 t/ha), block
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B (245.40 t/ha) and block C (235.68 t/ha). Similarly, BGB
ranged from 60.50 t/ha (block C) to 69.42 t/ha (block A)
across the forest. The total average biomass of the
forest was estimated at 313.69 t/ha (Figure 2a).
Although there was variation of biomass in the blocks,
the overall biomass values depict relatively uniform
productivity across the forest (F = 0.132, p = 0.86),
reflecting a consistent forest structure and
management strategy.
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Figure 2: (a) Total biomass (t/ha) in across forest blocks
and (b) box plot showing total carbon stock in within
forest blocks
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Carbon stock estimation and distribution pattern

The average carbon stock of the forest was 146.96 t/ha.
The block-level carbon stock estimates ranged from
137.79 t/ha (block A) to 158.12 t/ha (block A),
meanwhile block B (145.32 t/ha) and block D (146.61
t/ha) (Table 1). This result indicates that block A
contributed higher carbon storage due to the presence
of large and tall Sa/trees, whereas block C constituted
relatively small trees and, hence, less carbon storage.

Despite these apparent differences, ANOVA shows no
statistical significance within the blocks (F = 0.146, p
= 0.932) (Table 2), indicating no large variation in
structural and environmental attributes, with
homogeneous distribution of carbon. This indicates
that the community forest user groups (CFUGs) follow
effective forest management strategies

Basal area estimation

The average basal area of the community forest was
13.87 m%*/ha. Among the blocks, the maximum basal
area was observed in block B (17.67 m?%/ha),
consecutively followed by block D (16.02 m?ha) and
block C (15.27 m?/ha). Block A has the lowest basal
area (6.58 m?%/ha), although it has the highest biomass
and carbon stock. This indicates that that this block
has fewer but larger trees, thus having higher biomass
contribution (Table 1).

Table 1: Tree attributes in different eorest blocks

Forest Blocks
Attributes Total
A B C D

AGB (t/ha) 267.00 245.40 235.68 247.57 248.97
BGB (t/ha) 69.42 63.80 60.50 64.31 64.72
Biomass (t/ha) 336.42 309.20 293.18 311.94 313.69
Carbon (t/ha) 158.12 145.32 137.79 146.61 147.43
Basal area

(m?/ha) 6.58 17.67 15.27 16.02 13.87

Table 2: Analysis of Variance between Forest Bocks and Carbon Stock

Sum of Mean
df F P-value
Squares Square
Forest Blocks 11 3 3.63 0.14 0.93
Residuals 8000 322 24.84 - -
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Relationship of carbon stock with structural Attributes

Correlation analysis revealed strong and statistically
significant relationships among the four measured
structural attributes, like and carbon stock (Figure 3,
Table 3). There were strong positive associations
between DBH and carbon stock (r = 0.96, p < 0.001);
DBH and height (r = 0.82 p < 0.001), emphasizing their
importance as a reliable predictor for tree-level
biomass accumulation. The basal area also showed a
positive association with carbon stock (r = 0.73, p <
0.001), confirming its utility as a stand-level indicator
of carbon sequestration capacity. This evidence
provides evidence that larger, taller trees with greater
basal area contribute to forest biomass and carbon
reserves, consistent with the pattern in other tropical
Sal-dominated forests.
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Figure 3: Figure showing pairwise relationships
among DBH, height, carbon stock and basal area.
Circle size and colour indicate the strength and
direction of correlation coefficients respectively, with
dark red indicating stronger positive associations.

Table 3: Correlation matrix of measured variables

b e o e
DBH 1
Height 0.82 1
Carbon stock 0.96 0.86 1
Basal area 0.86 0.73 0.88 1

Relationship of carbon stock with environmental
variables

The GLMs showed a distinct pattern of carbon
distribution in relation to environmental variables
(Figure 4). Carbon stock and altitude showed unimodal
patterns with humpback shapes, reflecting reduced
carbon stock at mid altitude. This suggests that
anthropogenic pressures in the intermediate area may
reduce tree growth and carbon accumulation. The
carbon stock showed a curvilinear response with soil
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pH, where carbon stock decreased with increasing soil
pH, indicating that more acidic soils may support
greater carbon storage. Furthermore, it showed a
unimodal response with rock cover, suggesting unique
patterns in carbon distribution. This reflects that the
soil profile determines vegetation distribution, and
surface rocks may not be the limiting factor. Similarly,
the basal area exhibited unimodal hump-shaped
patterns with carbon stock, which provides an
interesting relationship where carbon stock was high
in the moderate basal area. These trends highlight the
combined influence of abiotic and biotic factors on
carbon dynamics in the forest ecosystems.
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Figure 4: Relationships between the carbon stock
(t/ha) and environmental variables: (a) Altitude (m
asl), (b) Soil pH, (c) Rock Cover (%) and (d) Basal Area
(m?2). Each plot includes observed data points and
fitted regression curves.

DISCUSSION
Forest biomass and carbon stock

The present study assessed the average biomass of Sa/
trees as 313.69 t/ha and the carbon stock as 146.96 t/ha
in Neureni—Chisapani CF. These values are relatively
high compared to several other Saldominated forests
previously reported from Nepal. Pandey et al. (2014)
estimated carbon stocks as 89.2 t/ha in sparse stands
to 129.0 t/ha in dense stands of the Kayerkhola
watershed, Chitwan, while Ghimire (2017) reported
62—-65 t/ha in Danphe CF, Dang. The higher carbon
stock in the present study likely reflects the presence
of mature Saltrees with larger DBH and tall trees. It is
because the eastern region (Makawanpur) receives
more rainfall than the western region (Dang), and high
precipitation zones can accelerate growth and
hydraulic conductivity compared to dry regions (He et
al.,, 2020). Moreover, the study site is supported by
sustained community management practices,
favouring recovery and proper growth of trees.
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This finding aligns with other tropical forests where
carbon storage capacity of the forest is strongly linked
to stand maturity and structural attributes, such as
basal area and tree height, along with the
management strategy (Khan et al., 2020; Fobane et al.,
2024). Thus, this forest provides strong evidence that
the potential of community forests serves as significant
carbon reservoirs within Nepal's tropical belt.

Forest structure and carbon variation

Although biomass and carbon stock varied among the
four blocks (highest in block A, lowest in block C),
statistical analyses (ANOVA, p = 0.932) showed no
significant differences between the blocks. This
indicates homogeneity in carbon distribution,
reflecting consistent physiographic conditions and
similar management practices across the blocks. The
slight differences in the blocks may be explained by
variations in tree size and density. This may be
supported by the evidence that block A with lowest
basal area (6.58 m?/ha) has highest carbon stock
(158.12 t/ha), suggesting that fewer but larger trees
contribute to higher carbon storage.

These patterns highlight that tree size distribution,
rather than pure stand density, is the key determinant
of carbon sequestration capacity in Sal forests. Similar
studies were reported from central Nepal by Thapa-
Magar & Shrestha (2015), where basal area and carbon
storage were strongly correlated, depicting the
importance of large mature trees in maintaining carbon
pools.

Structural attributes and carbon stock

The strong positive correlation between carbon stock
with DBH, tree height and basal area provides strong
evidence of tree allometry in biomass accumulation.
The strongest relationship was between DBH and
carbon stock (r = 0.96), supporting DBH as a reliable
predictor in biomass estimation models. Height and
basal area also showed strong correlation, consistent
with the findings from a Schima-Castanopsis forest in
the mid-hills (Tripathi et al., 2017) and tropical forests
in Bangladesh (Saimun et al., 2021).

These results support the ecological principle that
larger individuals act as “carbon giants” within forest,
contributing to total carbon storage. Silviculture
practices that promote the growth and survival of trees
through selective harvesting, thinning and
regeneration monitoring can significantly enhance
long-term carbon sequestration potential.

Carbon stock and environmental variables

Carbon stock exhibited a distinct relationship with the
environmental variables. Carbon showed a unimodal
pattern with humpback shapes at mid elevations, with
higher accumulation at lower and higher elevations.
On the other hand, Kumar et al. (2024) reported
contrasting trends in Western Ghats, India. The
observed result in the study area might be due to
illegal anthropogenic pressures, like cutting and felling
of trees at mid-altitudes. The curvilinear relationship
indicates greater carbon storage at moderately acidic
soil. This is consistent with the other results that Sa/
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trees grow luxuriantly in slightly acidic soil (Pandey &
Bhusal, 2016). As soil becomes more neutral, nutrient
limitations may reduce biomass accumulation. The
unimodal response of carbon stock with rock cover
showed reduced carbon, with increasing rockiness,
which highlights the importance of soil profile and
rooting space for biomass accumulation. This finding
reflects the results from Bohara et al. (2021), who
observed slope-dependent carbon variation in a
Makawanpur forest. Similarly, the basal area exhibited
a unimodal pattern with hump-shaped patterns,
confirming that the stand with moderate basal area is
favoured by the greater availability of resources like
nutrient which favoured the higher basal area and
hence carbon stock. This trend is not only in Sa/forests
but also across diverse tropical and subtropical
ecosystems (Fobane et al., 2024).

CONCLUSION

The findings of this study show that community-
managed forests can maintain stable biomass and
carbon levels across the forest area when scientific
forest management practices are applied. It further
demonstrates that collective management helps to
balance forest structure, with mature trees functioning
as an effective carbon sink. However, site-specific
conditions are important for carbon distribution and
should be integrated into management planning.
Effective monitoring and adaptive management of
community forests at the block level will support
sustainable management of forests and enhance their
contribution to climate change mitigation.
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