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Introduction 

Forest ecosystems are among the world’s greatest 
terrestrial carbon storages and contribute 
significantly to the global carbon cycle. Forest 
ecosystem carbon pools comprise above-
ground biomass (AGB), below-ground biomass, 

deadwood, litter, and peat soil (IPCC, 2006). Of 
these, AGB contains the largest carbon pool 
and is most directly impacted by deforestation 
and forest degradation. Estimating AGB is the 
primary step in quantifying the carbon stock 
of a forest as dry biomass contains about 47% 
carbon (IPCC, 2006). Nepal is a developing 
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This study aimed to estimate and map the Above Ground Forest 
Carbon stock in the Salbote Karele Community Forest in Ilam district. 
The research used field surveys and satellite data from Sentinel-2 
and Landsat-8 to determine biomass and carbon stocks. A total of 30 
inventory plots covering 283.56 hectares (ha) were surveyed, resulting 
in an estimated mean biomass of 156.48 ton ha-1 and carbon stock 
of 73.55 ton ha-1. The biomass was then correlated with five different 
Vegetation Indices (VIs), computed from Sentinel-2 and Landsat-8 
image and used to develop various simple linear regression models. 
The study found that Sentinel-2 data showed the highest correlation 
with observed biomass (R2 = 0.76) and lowest prediction error (RMSE 
= 78.44 tonha-1) compared to Landsat-8 data. The linear regression 
model developed from Sentinel-2’s NDVI (Normalized Difference 
Vegetation Index) data predicted a mean AGB of 129.82 ton ha-1 and 
AGC of 61.01 ton ha-1. This research highlights the importance of using 
Sentinel-2 data for estimating Above Ground Forest Carbon stocks due 
to its combination of spectral capabilities and broad applicability. It also 
shows that the Salbote Karele community forest is of great significance 
as it stores suitable amounts of carbon.
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country with a forest cover of about 6.16 million 
hectares (ha) or 41.69% of the total geographical 
area of the country (FRTC, 2022). Community 
forestry is the top priority programme for 
the forestry sector in the country. About 3.18 
million of forest (48.12% of total forest in the 
country) are managed by community-based 
forest management (MoFE, 2020). The REDD+ 
(Reducing Emissions from Deforestation and 
Degradation) scheme for developing countries 
aims to reduce emissions from forested lands and 
invest in sustainable development by providing 
a financial value according to the quantity of 
carbon stored in forests (Asner et al., 2012; 
FAO, 2010). With forests occupying more than 
40 percent of its territory, Nepal is an important 
target for REDD+ projects. (Hussin and Gilani, 
2011). The accuracy of AGB estimation is key to 
understanding trends in the carbon flux. This is 
useful in addressing problems of deforestation 
and degradation and gaining carbon mitigation 
benefits through mechanisms such as REDD+ 
(Hussin et al., 2011; Kim et al., 2010; Lu DS, 
2006). Furthermore, evaluation of AGB offers 
insights for managers, forestry professionals 
and scientists in understanding the impact of 
ecosystem changes on the global carbon cycle, 
tracking the effects of climate change, and 
accurately measuring the amount of carbon 
stored in the land (Chinembiri et al., 2013; Gara 
et al., 2014; Lu DS, 2006). Additionally, regular 
forest monitoring informs planning strategies 
and decision-making for responsible utilization 
of forest resources and conservation.

Forest AGB is generally estimated through a 
traditional field inventory. There is no doubt 
that traditional methods are more accurate, but 
they are also time-consuming, laborious and 
difficult to implement in inaccessible and large 
areas (Lu DS, 2006; Henry et al., 2011 ). Remote 
sensing provides a consistent and dependable 
alternative for a more robust, continuous, and 
spatially explicit biomass assessment (Herold et 
al., 2007). It has been demonstrated in several 
studies that satellite spectral information 
correlates strong with aboveground forest 
biomass and when combined with field 

measurements is a suitable estimation for AGB 
(Viana et al., 2012; Lu et al., 2012 ; Manna et al., 
2014 ;  Kushwaha et al., 2014 )

In the past three decades, Landsat images have 
predominantly been utilized for estimating 
forest AGB (Dube et al., 2015; Hall et al., 2006; 
Powell et al., 2009) due to their widely available 
long-term archive images with moderate spatial 
resolution. However, a common challenge is 
data saturation in Landsat imagery, where an 
increase in biomass leads to spectral saturation 
and ultimately results in under-estimation of 
biomass. For example, a study by Kasischke et 
al. (2015) found that significant differences in 
the accuracy of biomass and VIs were caused 
by the saturation of spectral indices at higher 
biomass values. Achieving accurate AGB 
estimation in complex sub-tropical regions 
such as Nepal requires high-resolution data, 
particularly if the goal is to overcome the 
saturation problem. Sentinel-2 is a state-of-the-
art sensor with wide spatial coverage and high 
spatial and temporal resolution. It offers high 
resolution imagery, with four bands at 10-meter 
resolution (Blue-Band 2, Green-Band 3, Red-
Band 4, NIR-Band 8) and one band at 20-meter 
resolution (NIR-Band 8A).These bands cover 
a major portion of vegetation absorption and 
reflectance behaviour and demonstrate a strong 
relationship with forest attributes (Barati et al., 
2011).

Although several studies have been conducted 
on the use of remote sensing data in tropical 
forests, only a few have combined different 
techniques involving field estimation to 
quantify the forest biomass (Næsset et al., 2016). 
Previous studies have mainly concentrated 
on using Sentinel-2 for determining the 
chlorophyll and nitrogen content of grasses 
(Clevers et al., 2013), evaluating the quality of 
rangelands (Ramoelo et al., 2015), mapping 
and monitoring wetlands (Kaplan and Avdan, 
2017) and tree canopy cover (Godinho et al., 
2017). However, the capability of using VIs to 
estimate and map AGB has not been thoroughly 
investigated, and only a limited number of 
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studies have been conducted on its ability to 
estimate forest biomass, particularly in the case 
of community forests in Nepal. In such areas, 
the use of Sentinel-2, with its high-resolution 
imagery and open access policy, could offer 
new opportunities for accurate and prompt 
estimation of biomass.

This study of a community forest in Ilam 
district represents a significant opportunity to 
advance our understanding of the application 
of remote sensing techniques to estimate above-
ground forest carbon across the challenging 
topographic landscapes such as the Churia 
region of Nepal. This study aims to contribute 
to a growing body of literature in this field 
by evaluating the efficacy of utilizing freely 
accessible satellite imagery, including Landsat 
and Sentinel, for estimating forest carbon. The 
results of this study have the potential to inform 
the development of more comprehensive 

remote sensing-based approaches for 
monitoring above-ground forest carbon and 
support the implementation of sustainable 
forest management practices. The objectives of 
the study are (1) to estimate biomass and carbon 
storage in community forest area through field 
inventory, (2) to compare various Sentinel-2 
indices with Landsat-8-derived indices and 
(3) to prepare the biomass and carbon stock 
map of the study area using best fit regression 
modelling.

Materials and Methods

Study area
This study is conducted in Salbote Karele 
community forest (C.F) of Ilam district (Figure 
1). Extending over an area of 1,703 sq km, Ilam 
is a hilly district situated about 600 km east 
from Kathmandu, in Province No. 1 of Nepal.

Figure 1 :Location map of the study area
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It is located between 260 40’ – 270 08’ N 
latitudes and 870 40’ – 880 10’ E longitudes. 
The district stretches across the lower belt of 
the Terai (flat land stretching all along the 
southern border with India) and Chure (a 
stretch of Siwalik hills extending from east 
to west on the north, next to the Terai) and 
into the upper hilly belt of the Himalayan 
region with total altitude ranging from 150 
m to 3,636 m above mean sea level (amsl) 
(Bhattarai et al., 2016). Tropical to alpine 
vegetation is found in the district, with total 
forest coverage of c. 55% of the total area 
(FRA, 2015). SalboteKarele CF is situated 
in Mai Municipality-10 of Ilam district. Mai 
Municipality has forest cover of 61.1% (DFRS, 
2018).This community forest is moderately 
dense in the southern Chure region of Ilam 
district and covers an area of 283.56 ha. The 
major tree species found in this community 
forest include Shorea robusta, Terminalia 
tomentosa, Schima wallichi, Bombax ceiba, 
Terminalia chebula, Lagerstroemia parviflora, 
Adina cordifolia.

Forest inventory
For field data collection, a systematic sampling 
approach was used in conjunction with circular 
sample plots of 500 m^2 (12.62 m radius). The 
number of field sample plots required was 
calculated using an equation from Husch et al. 
(2003).

𝑁𝑁𝑁𝑁 =
𝑡𝑡𝑡𝑡2 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴%2  

 
where, N is the number of sample plots, t is the 
statistical value at 95% significance level, CV is 
the coefficient of variation of DBH (Diameter at 
Breast Height) of the trees to be sampled, and 
AE is the allowable error for DBH of trees to be 
sampled.

From the available secondary data received 
from the operational plan of the CF, a CV of 
42.7 and a t-value of 1.19 were obtained at 95% 
confidence level. Keeping 10% of allowable 
error for the DBH of trees to be sampled, the 
minimum number of sample plots required was 

26.
Thirty systematically distributed field plots 
were measured and recorded. The methodology 
for each plot sample included species name, the 
DBH at 1.37 m above ground, and the height of 
all trees with DBH ≥ 10cm.

Forest Above Ground Biomass Estimation 
(FAGB):

The allometric equation formulated by Chave et 
al. (2014) was used in this research. It was found 
to be the best fit pan-tropic model for biomass 
estimation. It is also suitable for all forest types 
and bioclimatic conditions.

F𝐴𝐺𝐵= 0.0673 * (𝜌*𝐷2 *𝐻)0.976

Where,
ρ = Specific wood density (g/cm3) 
D= Diameter at breast height (DBH) (cm)
H= Height of tree (m)

The specific wood density values of tree species 
were derived from Sharma and Pukkala (1990)
Forest Above Ground Carbon Stock Estimation 
(FAGC):

The calculated above-ground biomass was 
converted into carbon using the (CF) factor 
0.47 formulated by IPCC (2006).

i.e. FAGC = AGB x CF

Remote sensing dataset and pre-processing
Single tile standard Sentinel-2 and Landsat 
8 product, cloud-free (<10% cloud cover) 
images close to the field inventory date were 
downloaded from the Copernicus Sentinel 
Scientific Data Hub (https://scihub.copernicus.
eu/) and USGS (United States Geological 
Survey) Earth Explorer (https://earthexplorer.
usgs.gov) respectively, which are open-source 
websites. The specifications of satellite imagery 
are listed in Table 1. 

The acquired Landsat-8 data set was a high-
level product that was already processed 
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to calibrate raw digital numbers (DNs) to 
Top of the Atmosphere (TOA) reflectance 
and then corrected to surface reflectance 
using atmospheric parameters and Digital 
Elevation Model (DEM). Furthermore, TOA 
brightness temperature and masks for clouds, 
cloud shadows, adjacent clouds, land, and 
water were also already available as high-
level products from the USGS (Palareti et al., 
2016). Therefore, for atmospheric correction, 
only sun angle correction has been applied. 
The Semi-automatic Classification plugin in 
QGIS 3.8.2 was utilized to transform radiance 
imagery to surface reflectance through Dark 
Object Subtraction (DOS). The DOS technique 
operates by eliminating the darkest pixel in 
each band, which is impacted by atmospheric 
scattering (Chavez Jr, 1988). The red and near-
infrared bands of the Sentinel and Landsat data 
were used as they have been widely accepted for 
vegetation monitoring and biomass estimates. 
The five VIs, which included NDVI, SAVI, 
DVI, MSAVI, and EVI, were calculated using 
the equations in Table 2.

Correlation analysis
AGB shape file created via QGIS 3.8.2 was 
overlain on corresponding VIs of both the 
acquired images. The values of masked pixels 
by inventory plots were extracted for all 
the indices. A correlation analysis between 
the field estimated biomass and extracted 
pixel values of each vegetation index was 
done to understand the association between 
biomass and the VIs. Pearson’s correlation 
analysis was applied and the significance 
of the relationship was also assessed using 
the P-Value, for which a value of< 0.05 was 
considered significant.

Model development for biomass estimates 
and validation
Based on the correlation between the VIs and 
field measured biomass, a simple linear model 
was established for each satellite data set. From 
the field inventory data, 70% of the data set was 
used for model estimation while the remaining 
30% was for evaluating the model performance 
(validation). Each model was assessed by 
coefficient of determination (R2) and significant 
value (P-value) and Root Mean Square Error 
(RMSE). The final model for biomass estimation 
and mapping was taken, which has the highest 
coefficient of determination (R2), least P-value 
and least RMSE. The predicted data for each 
model were taken as the independent variable 
and observed as the dependent following 
recommendation from Piñeiro et al. (2008).

S.N Satellite 
Images

Number 
of bands

Spatial 
Resolution 

(m)

Cloud 
cover (%)

1 Landsat-8 2, 4, 5 30 m Less 
than 2

2 Sentinel-2 2, 4, 8 10 m Less 
than 2

Table 1: Satellite images used for calculating 
vegetation indices

Table 2: List and Formulas for different vegetation indices
Vegetation indices (VIs) Formula Sentinel-2 Landsat-8
Normalized Difference
Vegetation 
Index (NDVI)

(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁)
(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁)

(𝐵𝐵𝐵𝐵8 − 𝐵𝐵𝐵𝐵4)
(𝐵𝐵𝐵𝐵8 + 𝐵𝐵𝐵𝐵4)

(B5 − B4)
(B5 + B4)

Soil Adjusted Vegetation 
Index (SAVI)

(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁)
(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁 + 𝐿𝐿𝐿𝐿) ∗ (1 + 𝐿𝐿𝐿𝐿)

(𝐵𝐵𝐵𝐵8− 𝐵𝐵𝐵𝐵4)
(𝐵𝐵𝐵𝐵8 + 𝐵𝐵𝐵𝐵4 + 0.5) ∗ (1 + 0.5)

(𝐵𝐵𝐵𝐵5− 𝐵𝐵𝐵𝐵4)
(𝐵𝐵𝐵𝐵5 + 𝐵𝐵𝐵𝐵4 + 0.5) ∗ (1 + 0.5)

Difference Vegetation Index 
(DVI) 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁 𝐵𝐵𝐵𝐵8 − 𝐵𝐵𝐵𝐵4 𝐵𝐵𝐵𝐵5 − 𝐵𝐵𝐵𝐵4

Modified Soil Adjusted
VegetationIndex (MSAVI)

2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 1 − �(2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 1)2 − 8(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁)
2

2𝐵𝐵𝐵𝐵8 + 1 − �(2𝐵𝐵𝐵𝐵8 + 1)2 − 8(𝐵𝐵𝐵𝐵8 −𝐵𝐵𝐵𝐵4)
2

2𝐵𝐵𝐵𝐵5 + 1 − �(2𝐵𝐵𝐵𝐵5 + 1)2 − 8(𝐵𝐵𝐵𝐵5 −𝐵𝐵𝐵𝐵4)
2

Enhanced vegetation index 
(EVI) 2.5 ∗

(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁)
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 6 ∗ 𝑁𝑁𝑁𝑁 − 7.5 ∗ 𝐵𝐵𝐵𝐵 + 1 2.5 ∗

(𝐵𝐵𝐵𝐵8−𝐵𝐵𝐵𝐵4)
𝐵𝐵𝐵𝐵8 + 6 ∗ 𝐵𝐵𝐵𝐵4 − 7.5 ∗ 𝐵𝐵𝐵𝐵2 + 1

2.5 ∗
(𝐵𝐵𝐵𝐵5−𝐵𝐵𝐵𝐵4)

𝐵𝐵𝐵𝐵5 + 6 ∗ 𝐵𝐵𝐵𝐵4 − 7.5 ∗ 𝐵𝐵𝐵𝐵2 + 1

 Here, L=soil brightness correction factor i.e. 0.5
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Results and Discussion 

Biomass and carbon stock from field inventory
The major forest tree species found in the study 
area were Shorea robusta, Terminalia tomentosa, 
Schima wallichi, Bombax ceiba, and Terminalia 
chebula. Table 3 shows Biomass and Carbon 
stock estimated per plot calculated from the 
field inventory data collected from 30 plots in 
the study area. The AGB ranged from 16.60 ton 
ha-1 to 497.59 ton ha-1 with the mean of 156.48 
ton ha-1. The above ground carbon (AGC) 
ranged from 7.80 ton ha-1 to 233.87 ton ha-1 

with the mean of 73.55 ton ha-1. Total AGB in 
the study area was 44372.95 ton and total AGC 
in the study area was 20855.29 ton. 

According to IPCC, the range of AGB in tropical 
forest in Asia is about 67.7 ton ha-1 to 184.6 ton 
ha-1(Rozendaal et al., 2022) and, according to 
Subedi et al. (2022), the average estimated AGC 
for the Churia  region of Nepal was 89.20 ton 
ha-1. which is higher than the estimates from 
the current study. This higher average may 
reflect the study area being only a moderately 
dense forest that has also been affected by 
encroachment in different parts for settlement.

Correlation analysis
The correlation coefficients for different VIs 
calculated from both the Landsat-8 and sentinel-2 
are presented in Table 4 and Table 5 respectively 
and represented in scatter plot graphs in Figure 2 
and Figure 3 respectively. All VIs from both the 
satellites were observed to correlate positively 
with the estimated field biomass. Thus, the study 
detected significant correlation of (r = 0.708, 
p < 0.001) for NDVI, (r = 0.380, p < 0.01) for 
DVI, (r = 0.593, p < 0.001) for MSAVI, (r = 
0.614, p < 0.001) for SAVI, (r = 0.453, p < 0.01) 
for EVI calculated from Landsat-8 imagery and 
similarly significant correlation of ( r = 0.797, p 
< 0.001) for NDVI,(r = 0.455, p < 0.01) for DVI, 
(r = 0.532, p < 0.001) for MSAVI, (r = 0.594, p 
< 0.001) for SAVI,(r = 0.441, p < 0.01) for EVI 
calculated from Sentinel-2 imagery.

14 24879.56 497.59 233.87
15 4631.67 92.63 43.54
16 2587.82 51.76 24.33
17 829.99 16.60 7.80
18 9675.16 193.50 90.95
19 7464.38 149.29 70.17
20 6593.66 131.87 61.98
21 7240.23 144.80 68.06
22 17154.28 343.09 161.25
23 4483.08 89.66 42.14
24 3318.41 66.37 31.19
25 4524.85 90.50 42.53
26 12366.13 247.32 116.24
27 8675.12 173.50 81.55
28 3339.92 66.80 31.40
29 7663.02 153.26 72.03
30 6854.24 137.08 64.43

Average 156.49 73.55

Plot 
No.

Forest Above 
Ground 

Biomass (kg)

Forest Above 
Ground 
Biomass

(ton ha-1)

Forest Above 
Ground 
Carbon

(ton ha-1)
1 14253.65 285.07 133.98
2 9310.91 186.22 87.52
3 2273.20 45.46 21.37
4 9109.91 182.20 85.63
5 2413.22 48.26 22.68
6 2970.72 59.41 27.92
7 5475.65 109.51 51.47
8 8990.30 179.81 84.51
9 14157.67 283.15 133.08

10 5224.90 104.50 49.11
11 11866.51 237.33 111.55
12 7853.15 157.06 73.82
13 8546.55 170.93 80.34

Table 3: Biomass and carbon stocks of 
the sample plots

Vegetation 
Index

R P-value
Sentinel 

-2
Landsat 

-8
Sentinel 

-2
Landsat 

-8
NDVI 0.797 0.708 <0.001 <0.001
DVI 0.455 0.380 <0.01 <0.01
SAVI 0.594 0.614 <0.001 <0.001
MSAVI 0.532 0.593 <0.001 <0.001
EVI 0.441 0.453 <0.01 <0.01

Table 4: Correlation between VIs and field 
estimation biomass for Landsat-8 and Sentinel-2
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Figure 2: Scatterplots of correlation between the field estimated biomass and Landsat-8 VIs (NDVI, 
MSAVI, DVI, SAVI, EVI)
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Figure 3: Scatter plots of correlation between the field estimated biomass and Sentinel-2 VIs (NDVI, 
MSAVI, DVI, SAVI, EVI)
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Modelling the relationship between VIs 
and Field AGB
The established statistical models from 
simple linear regression analysis for biomass 
estimation between the VIs (NDVI, DVI, 
MSAVI, SAVI, and EVI) from both Landsat-8 
and sentinel-2 and the biomass estimated 
from the field inventory showed moderate 
relationships. The established linear regression 
models and R2 value of Landsat-8 and 
Sentinel-2 indices are summarized in Table 
6 and Table 7 respectively and represented in 
scatter plot graphs in Figure 4 and Figure 5 
respectively. Four Landsat-8 indices (NDVI, 
DVI, SAVI, and EVI) gave low values of R2 as 
compared to the Sentinel-2 indices. However, 
one Landsat-8 index (MSAVI) obtained greater 
value of R2 in comparison to the Sentinel-2 
index. It is found that NDVI from Sentinel-2 
obtained the highest value of R2 (0.733), 

followed by NDVI from Landsat-8 (R2 = 
0.690). Only the DVI vegetation index had 
a weak relationship with the field estimated 
biomass for both the satellites. Overall, the 
existing relationship between the VIs with 
field estimated biomass implies that they can 
be used to estimate biomass. However, only the 
NDVI-based models (Equation i and Equation 
vi) of both Landsat-8 and Sentinel-2 were used 
for further validation since they were found 
to be the best predictor of biomass among all 
other indices used.

The results of this study show a moderate 
performance, which could be due to the highly 
heterogeneous characteristics of a forest tree. 
For example, Wilkes et al. (2018) highlight the 
challenges of biomass estimation using remote 
sensing due to tree structure, heterogeneity, and 
complex land cover.

Table 5: Biomass estimation using simple linear regression model for Landsat-8 and Sentinel-2

Satellite VegetationIndex Model R2 p-value Equation

NDVI AGB = -355.66 + 1201.711*NDVI 0.690 <0.0001 i

DVI AGB = -86.097+ 1126.303*DVI 0.344 <0.001 ii

Landsat-8 SAVI AGB = -183.389 + 1067.399*SAVI 0.527 <0.0001 iii

MSAVI AGB=-137.376+ 965.470*MSAVI 0.523 <0.0001 iv

EVI AGB = -138.777+ 863.058*EVI 0.405 <0.0001 v

NDVI AGB = -113.602 + 983.414*NDVI 0.733 <0.0001 vi

DVI AGB = 17.712+ 2555.562*DVI 0.360 <0.001 vii

Sentinel-2 SAVI AGB = -120.683+ 771.947*SAVI 0.574 <0.0001 viii

MSAVI AGB = -59.256 + 547.585*MSAVI 0.456 <0.0001 ix

EVI AGB = -30.340 + 1314.922*EVI 0.483 <0.0001 x
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Figure 4: Scatterplots of Regression model for biomass estimate from Landsat-8 VIs(NDVI, MSAVI, DVI, 
SAVI, EVI)
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Figure 5: Scatterplots of regression model for biomass estimate from Sentinel-2 VIs (NDVI, MSAVI, DVI, 
SAVI, EVI)



Forestry: Journal of Institute of Forestry, Nepal 19 (2022) 40-55KC et al.

51

Model validation and mapping of biomass 
and carbon stock
The assessment of model performance for 
estimating biomass using NDVI-based models 
(Equation i and Equation vi) showed good 
performance in both Landsat-8 and Sentinel-2 
imagery. Comparison between Sentinel-2 and 
Landsat-8 (Figure 6 and Figure 7) showed 
that highest coefficient of determination (R2) 
and least P-value was between predicted and 
observed biomass with the value of R2 = 0.76 
and p < 0.001 respectively. The lowest RMSE 
found was 78.44 ton ha-1 based on NDVI linear 
regression model (Equation vi) derived from 
Sentinel-2. It indicated that approximately 
76% of the observed AGB was explained by 
the predicted AGB according to this model 
(Figure 6).

The biomass map and carbon stock map based on 
this model (Equation vi) is shown in Figure 8 and 
Figure 9 respectively, using the raster calculator 
in QGIS 3.8.2. The AGB values predicted from 
this model ranged from 0 to 402.31 ton ha-1 with 
the mean value of 129.82 ton ha-1. Using the 
0.47 conversion factor from IPCC (2006), the 
aboveground carbon (AGC) estimated from the 
study area was 61.01 ton ha-1.

Many studies have indicated the successful 

application of optical remote sensing data 
such as Sentinel-2 and Landsat-8 for biomass 
estimation. For instance, Sibanda et al. (2015)
compared Sentinel-2 MSI and Landsat 8 OLI 
estimations of the AGB of different vegetations. 
Their results showed better performance by 
Sentinel-2 derived models, with an R2 value 
of 0.81 and an RMSE of prediction (RMSEP) 
value of 1.07 kg m-1. Landsat 8 OLI yielded a 
slightly lower R2 value of 0.76 and an RMSEP 
value of 1.15 kg m-1. The findings of this study 
are similar to this result. Furthermore, the 
sample plots of this study were constrained by 
accessibility, time and cost. Nevertheless, the 
sample plots were successful in establishing a 
model (R2 = 0.76) and predicted AGB map on 
the study area. The reason why the model on 
this research shows good performance might 
be that the forest being moderately dense as 
Anaya et al. (2009) reported that optical remote 
sensing-based biomass estimation performs 
better at low biomass levels . The same has also 
been reported by Kushwaha et al. (2014) and  
Manna et al. (2014). 

The results of this study provide useful 
information to managers and planners and can 
be used as a valuable input in devising working/
management plans and prioritizing areas for 
conservation.

Figure 6: Scatterplot of assessment of model 
performance for biomass estimation (validation) 

for Sentinel-2 NDVI

Figure 7: Scatterplot of assessment of model 
performance for biomass estimation (validation) 

for Landsat-8 NDVI
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Figure 9: Carbon stock distribution Map predicted from Sentinel-2 NDVI

Figure 8: Biomass distribution Map predicted from Sentinel-2 NDVI
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Conclusion and Recommendation

A remote sensing-based model for AGB 
retrieval in a community forest setting was 
developed from VIs (SAVI, NDVI, DVI, 
MSAVI, and EVI) derived from Sentinel-2 and 
Landsat-8 data sets as well as field data extracted 
from 30 plots. Comparison between Sentinel-2 
and Landsat-8 showed that regression equation 
linear modelling based on NDVI data derived 
from Sentinel-2 was found to be the better 
model for predicting biomass. It indicated that 
approximately 76% of the observed AGB was 
explained by the predicted AGB according 
to this model and was the best fitted model. 
Despite good estimates of the AGB in this study, 
our models are limited to the study area due to 
small number of field plots data. Future studies 
should increase the number of field plots as 
regression models often perform best when 
established on a much larger sample and hence 
can generalize for greater area.

The study suggested that Sentinel-2 product has 
the greater potential to estimate biomass and 
map forest areas. This may be due to its higher 
resolution than that of the Landsat-8. It also 
shows that the SalboteKarele community forest 
is of considerable significance as it stores suitable 
amounts of carbon despite disturbance from 
anthropogenic factor in some areas. Thus, the 
study assessed the value of these forests in terms 
of carbon sequestration, demonstrating that there 
is a significant potential for CO2 sequestration, as 
well as their environmental role in combating 
climate change. As a result, it is concluded 
that, by growing and protecting these forests, a 
significant amount of carbon can be sequestered 
in the future. As a result, additional carbon 
credits can be obtained through carbon trading 
in the context of REDD+ forest management.
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