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This is participatory action research (PAR) explored master level students’ concept image and their
understanding of principal curvature, in the course ‘Differential Geometry’. The steps used in PAR were P-plan,
A-Action, O-Observation, and R-reflection (PAOR). This study focused on answering the question “How do
students understand the concept of principal curvature while using Mathematica and JavaScript modeling?2”.
To answer this question, the study is based on University Campus, Central Department of Mathematics
Education, Tribhuvan University during the 2024 academic year. The participants of this study were thirteen
master’s level students (five girls and eight boys). The study followed the iterative cycles of PAR to understand
how Mathematica and JavaScript visualization help students to build a concept image of mathematical
understanding. In this study, observation checklist, students’ interactions and notes, and concept maps as
artifacts were used as the data collection tools. The collected data were transcribed, and thematic coding was
used to analyze the collected information. Based on the data analysis, the findings of this study showed that
Mathematica and JavaScript-based interactive visualizations provided a bridge to connect ‘concept image
and concept definition’ through engaged and interactive participation while learning Differential Geometry.
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Introduction

The teaching learning practice of mathematics education
is based on a tendency that students focus on procedural
understanding but lacking conceptual image. As a university
teacher, | have a consistent observation of this tendency, in
a geometry course | teach, most of the content are abstract
in nature and students frequently rely on procedural
understanding only.

In mathematics, when concepts are difficult to visualize,
students often memorize rules and algorithms without a
deep understanding. This kinds of rote memorization is
also discussed in a literature (Erol & Saygi, 2024; Sulastri
et al., 2021). This creates a self-reinforcing cycle where the
abstract nature of the content promotes rote learning. It is
also mentioned in literature that, “dynamic visualization can
enhance formation of concept image, support for better
understanding, and guide for learning motivation”(Bos &

Wigmans, 2025). However, it is also mentioned that, ‘if
visuals are not aligned with pedagogical thoughtfulness, or
if not with clear learning goals, it can also hinder learning
outcomes’(Bos & Wigmans, 2025).

Modern students exhibit a strong preference for visual
learning styles that involve direct interaction, preferring to
see, to touch. This fundamental shift in learning preferences
is due to growing use of internet resources, GenAl and use
of mathematical software. This shift highlights the need
to move beyond traditional, static and text only teaching
methods in mathematics to more visual and simulation-
based teaching. In a research it is mentioned that, “a good
understanding of mathematics can be achieved through
use of manipulatives” (Caniglia & Meadows, 2025).

Mathematica and JavaScript, as a programming language,
is widely applicable in creating “interactive visual content”
and is supported by a rich ecosystem of libraries, supporting
the development of dynamic tools in web platform. These
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Introduction

The teaching learning practice of mathematics education
is based on a tendency that students focus on procedural
understanding but lacking conceptual image. As a university
teacher, | have a consistent observation of this tendency, in
a geometry course | teach, most of the content are abstract
in nature and students frequently rely on procedural
understanding only.

In mathematics, when concepts are difficult to visualize,
students often memorize rules and algorithms without a
deep understanding. This kinds of rote memorization is
also discussed in a literature (Erol & Saygi, 2024; Sulastri
et al., 2021). This creates a self-reinforcing cycle where the
abstract nature of the content promotes rote learning. It is
also mentioned in literature that, “dynamic visualization can
enhance formation of concept image, support for better
understanding, and guide for learning motivation”(Bos &
Wigmans, 2025). However, it is also mentioned that, ‘if
visuals are not aligned with pedagogical thoughtfulness, or
if not with clear learning goals, it can also hinder learning
outcomes’(Bos & Wigmans, 2025).

Modern students exhibit a strong preference for visual
learning styles that involve direct interaction, preferring to
see, to touch. This fundamental shift in learning preferences
is due to growing use of internet resources, GenAl and use
of mathematical software. This shift highlights the need
to move beyond traditional, static and text only teaching
methods in mathematics to more visual and simulation-
based teaching. In a research it is mentioned that, “a good
understanding of mathematics can be achieved through
use of manipulatives” (Caniglia & Meadows, 2025).

Mathematica and JavaScript, as a programming language,
is widely applicable in creating “interactive visual content”
and is supported by a rich ecosystem of libraries, supporting
the development of dynamic tools in web platform. These
libraries are equally beneficial for the course ‘Differential
Geometry’.

In addition, Virtual Learning Environments (VLE) provide
additional platform for integrating interactive digital tools,
offering a structured and flexible learning environment
to deliver contents mathematics education. VLEs offer
numerous advantages, including enhanced engagement,
increased flexibility, personalized learning pathways,
improved accessibility, and the development of essential
technology skills (Navarro-lbarra et al., 2017).

Digital interactive tools embedded within VLE, such as
virtual manipulative, digital simulation can be instrumental
in facilitating students activities for deeper exploration of
mathematical concepts (Dhakal, 2023). In a research, it
is mentioned that “digital game can be an effective tool
to enhance conceptual schema development” (Alkan &
Ada, 2024). In similar fashion, this study can be useful to
visualize abstract nature of content in Differential Geometry,
as | perceived, as researcher.

Geometry in higher education is aimed to develop
‘spatial awareness, geometrical intuition and the ability
to visualize’, as | experienced. If students struggle to form
accurate mental images through text only based resources,
their internal representations may incomplete, because
these new generations, also called generation-z are heavily
rely on digital visuals. This “visualization gap” in academic
environment an compels them to rely on inaccurate
definitions, which can leads to the formation of common
misconceptions, such kinds of discussions are part of
number of literatures (Dhakal, 2019; Herndndez-Delgado
et al., 2022). The same type of problems is seen in my
classroom experience too.

Hence, the fundamental problem of mathematics
education is not just the abstractness itself, but the absence
of effective, interactive tools or pedagogical methods to
transform the abstract concept into something visually and
tangibly comprehensible digital and interactive resources,
as explained by Dhakal(Dhakal, 2023).

Therefore, | prioritized using interactive visual mediators
that directly bridge this ‘visualization gap’, thereby laying
a stronger and better foundation to help student to build
better conceptual understanding.

Methods

This paper is based on participatory action research (PAR)
aimed to improve conceptual understanding in mathematics
through JavaScript integrated digital simulation-based
learning resources. The research question was “How do
students understand the concept of principal curvature
while using Mathematica and JavaScript modeling”2

PAR is used in this study, as it emphasizes practitioner
involvement, iterative improvement, and a direct focus
on content (Denzin & Lincoln, 2018; Lawson et al., 2015;
McNiff & Whitehead, 2012). This approach aligns with the
goal of improving teaching practices using TPACK based
learning content to enhance student’s learning outcomes.

PAR is fundamentally a form of inquiry where practitioners,
including teachers and students, together they investigate
and evaluate their own professional practice to improve
infended learning outcomes. The Jean McNiff model for
this action research provides a concrete, 4-step cyclical
process for implementing PAR(Denzin & Lincoln, 2018;
Lawson et al., 2015; McNiff & Whitehead, 2012).

PAR is characterized as ‘bottom up’ and ‘inside out’
research, fostering a partnership between practitioners, and
other stakeholders(Creswell et al., 2018; Denzin & Lincoln,
2018; Lawson et al., 2015; McNiff & Whitehead, 2012), if
applicable. Crucially, it defines all participants as ‘experts
with important knowledge and perspectives’. This emphasis
on collaboration, empowerment, and inclusivity is essential
for effectively involving both students and teachers in the
research process.

This PAR study also used Technological
Content Knowledge (TPACK) (Mishra et

Pedagogical
2007)

al.,
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framework for technology integration based “participatory-
action-reflection cycle” as its theoretical framework(McNiff
& Whitehead, 2012). The steps used are plan, action,
observation, and reflection (PAOR) based on TPACK
framework.

| 2
Action

1 f 3 4
Plan ~| Observatio Reflection
Figure 1: TPACK based PAOR cycle

The participants of this study were thirteen masters’ degree
students (five girls and eight boys) studying at University
Campus. The academic session was 2024. In this study,
data were collected through observation checklist, students
interactions and notes, and concept maps as artifacts
(Creswell et al., 2018; Denzin & Lincoln, 2018). These
concepts maps are identified as a tool for students to ‘show
their understanding through visual representation, help
them to connect concept image to the concept definition’.
The collected data were analyzed based on meaningful
codes and verbatim.

Results

In Differential Geometry, the study of surfaces involves
understanding of intrinsic and extrinsic properties. These
properties are about surface’s shape, curvature, and
topology. In number of text book, it is defined that “a
surface is ‘two-dimensional manifold’, which explains
that, surface resembles a flat plane locally around each
point, but globally it may have more complex structure and
curvature” (Pundir et al., 2021).

As mentioned in number of textbooks, “a surface is defined
as locus of points (x,y,z) whose Cartesian coordinates x,y,z
are function of two independent parameter, say u and v”
(Dhakal & Koirala, 2024).

It is written as
“x= f(u,v), y= g(u,v), z= h(u,v)"” (Dhakal & Koirala, 2024).

In vector form, “surface is explained as locus of point (x,y,z)
whose position with respect to origin O is function of two
independent parameter u and v”(Pundir et al., 2021).

It is written as
=7 (V)

In implicit form, “surface is defined as locus of points (x,y,z)
whose Cartesian coordinate satisfy an equation of the form

F(x,y,z)=0.

Based on the definitions given above, intrinsic property of
a surface is defined as “invariant, inherent or unchanging
property of surface” (Pundir et al., 2021) . Some common
example of non-intrinsic properties of a surface are given
as “(a) Normal Vector: the orientation of the normal vector
is determined by the surface’s embedding in space (b)

Curvature of sections” (Pundir et al., 2021). These are the
“measure of how the surface bends in the surrounding
space”(Dhakal & Koirala, 2024).

Cycle 1: normal section

The first cycle of this participatory action research involved
the design and initial implementation of inferactive
visualizations of section of the surface. In reading text, it
is written that, “give a surface S: = (u,v) and be a plane
at P on the surface. Then SP describes a curve C on the
surface, called section of the surface”(Dhakal & Koirala,
2024; Pundir et al., 2021). In this definition, if the plane
P is spanned by and , then C is called normal section.
Otherwise, C is called oblique section of the surface.

(a) Normal to surface N

Figure 2: Section of the surface

The JavaScript code of this visualization is as below.

(b) Normal section (¢) Oblique section

board.create('view3d’, [ [-6, -3], [8, 8], [[-5, 5], [-5, 5], [-5,
Sl

view.create('parametricsurface3d’, [ (u, v) =>u, (u, v) =>
v, (U, v) =>-440.2*u**2+0.2*v**2,

[-4,4], [-4, 4]], {strokeColor: ‘green’

view.create('parametricsurface3d’, [ (u, v) =>u, (u, v) =>
\Z (UI V) :>'4+Ul ['214]/ ['41 4]]/ {})/

view.create(‘curve3d’, [(t) =>2.5 + 2.5*Math.cos(t), (1) =>
2.5*Math.sin(t), () =>2.5*Math.cos(t)-1.5, [1,5.25]], {});

the visualization is available at

www.bedprasaddhakal.com.np/2024/08/local-non-
intrinsic-property-of-surface.html.

The visualization given in Figure 2 illustrated the different
ways a surface can be sectioned by a plane. When student
used this content through JavaScript visualization, one
student reported that “...Looking at the figure, | came to
know that there are two types of sections, some a normal
line, and some do not contain a normal line “.

[t is mentioned in textbook that, a normal vector is
perpendicular to the tangent plane of the surface at that
point. This visualization has provided concept image of a
normal to the surface. Further, another student said that
“... intersection of the plane and surface form a curve is
called ‘normal section’ if the plane is containing the surface
normal. | also learned about ‘oblique section’, the section
which does not contain the normal line”.

In summary, based on both quotations, it can be said that

Education and Development | Volume 35 | Issue 1 | 2026

Online Available: www.ceridjournal.org


http://www.bedprasaddhakal.com.np/2024/08/local-non-intrinsic-property-of-surface.html
http://www.bedprasaddhakal.com.np/2024/08/local-non-intrinsic-property-of-surface.html

PRINCIPAL CURVATURE: MODELING WITH MATHEMATICA...

JavaScript visualization helped student to distinguishes
between normal and oblique sections of a surface based
on whether the cutting plane contains the surface’s normal
vector at the point of interest.

Using the visualization, student also became able to
understand that there are infinitely many normal sections
on the surface. In a normal section, they reported that

— N

N=n
Cycle 2: Normal curvature

In this cycle, students were asked to explain normal
curvature. In the textbook, normal curvature is defined as,
“given a surface S:r”=r*(u,v) and C be a normal section on
it, then curvature of C is called normal curvature, which
is denoted by n”(Dhakal & Koirala, 2024; Pundir et al.,
2021).

It is measure of how the surface bends in a particular
direction. Also, the expression of normal curvature is given

by

Using the Mathematica code, the researcher computed
variants of normal curvature during the class, then student
became aware that, as section varies, the curvature varies.
The mathematics code is given below.

ru,v]:={u,vu~2-v"2};
Manipulate[

Module[{ru, rv, ruu, ruy, rw, E, F, G, L, M, N, du, dv, kappa,
n},

ru = D[r[u, v], u] /. {u-> 0, v->0};

rv = DJ[r[u, v],v] /. {u-> 0, v->0};

ruu = D[r[u, v], {u, 2}] /. {u-> 0, v -> 0};
ruv = DJ[r[u, v], u, v] /. {u-> 0, v -> 0};
rvw = D[r[u, v], {v, 2}] /. {u-> 0, v -> 0};
E=ruru; F=rurv; G =rvry;

n = Normalize[Cross[ru, rv]];

L = ruu.n; M = ruv.n; N = rvv.n;

du = Cos[\[Theta]]; dv = Sin[\[Theta]];

kappa =(Ldu”™2+2 M du dv+N dv” 2)/(E du”™2+2 Fdu
dv+G dv ™ 2);

Row[{“\[Kappa]n(\[Theta]) = *,
NumberForm[kappa, {5, 3}}], {{\[Theta], O,
“Direction Angle (\[Theta])"}, 0, 2 Pi}]

Since Mathematica code licensing software, the code is
converted to JavaScript code to visualize normal section
and normal curvature in webpage for dynamic simulation.
The JavaScript is open source and compatible with HTML
for webpage deployment.

Cycle 3: Principal section

In the third cycle, the focus of the PAR deployment is to
visualize principal sections. In textbook (Pundir et al.,
2021), principal section is define as “given a surface S:=
(u,v) and P be a point on it, then there are infinitely many
normal sections at P the two sections, which give maximum
and minimum curvature at P are called principal sections
at P”(Dhakal & Koirala, 2024; Herndndez-Delgado et al.,
2022).

These principal sections are always orthogonal.

(a) Principal section

Figure 3: Principal section of the surface

rlu ,v]:={u,v,05u"2-0.5v"2};
pO = r[0, O];

ru = DI[r[u, v], u];

(b) Principal section (c) principal sections

rv = DI[r[u, v], v];

nVec = Cross[ru, rv] /. {u -> 0, v -> 0};
t1 = Normalize[ru /. {u -> 0, v -> 0}];
t2 = Normalize[rv /. {u -> 0, v -> 0}];

sectionDirection[\[Theta] | := Cos[\[Theta]] t1

[Theta]] 12;

+ Sin[\

normalSectionCurve[\[Theta] ] := Module[{dir, gamma},
dir = sectionDirection[\[Theta]];

gammals_] := r @@ (s*dir[[1 ;; 2]]);
ParametricPlot3D[gammals], {s, -1.5, 1.5}]];
rotatingPlane[\[Theta] ] :=

Module[{dir = sectionDirection[\[Theta]]},

ParametricPlot3D[p0 + s*dir + t*nVec, {s, -2, 2}, {t, -2,
2}];

surfacePlot = ParametricPlot3D[r[u, V], {u, -2, 2}, {v, -2,
2}];

normalArrow =

Graphics3D[{Blue,
Normalize[nVec]}}];

Manipulate|

Thick, Arrow[{p0, [o]0] +

Showl[{surfacePlot, normalSectionCurve[\[Thetal]],
rotatingPlane[\[Theta]], normalArrow}], {{\[Theta], O,
“Rotate Plane (\[Theta])"}, O, 2 Pi}]
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Figure 4: Normal section at difference rotation

While student used these visualization, given in Figure 4,
it helped them to understand the concept definition, “two
sections, which have maximum and minimum curvature
at P, are called principal sections at P”(Dhakal & Koirala,
2024; Herndndez-Delgado et al., 2022; Pundir et al.,
2021). This phenomenon was discussed with students
during interview. Then a student reported that ‘Oh! | get
it now, curves that bend the most and the least, those are
the principal sections! So, normal section with the largest
and smallest curvature are called the principal sections,
...ummmm, ..right2’

Based on the quotation, it can be said that Mathematica
and JavaScript visualization supported students to explain
the principal sections effectively. This helped student to
understand about the equation of principal section too,
which is explained as

(EM-FL)du ~ 2+ (EN-GL)dudv+(FN-GM)dv ~ 2=0 .

In discussion, it is also concerned that principal directions
are always orthogonal, student were able to verify the
relation of orthogonality, saying that principal directions
are always orthogonal

ER-QF+GP=0

Using the responses given by students, the study resulted
that Mathematica and JavaScript coded visualization gave
better idea to the students that the tangents to principal
sections are principal directions. Since ‘two principal
sections (in general) exist, there are two principal directions
(in general) that exist at every point on a surface and it
will be always orthogonal’, which is also explained in
textbooks(Dhakal & Koirala, 2024; Pundir et al., 2021).

Cycle 4: Principal curvature

In the fourth cycle, the focus is given to the principal
curvature. In textbook, it is given that, “given a surface S:
t”=r"(u,v) and P be a point on it. Then there are infinitely
many normal curvatures at P Now, two curvatures, which
are maximum and minimum at P are called principal
curvatures at P”(Dhakal & Koirala, 2024; Pundir et al.,
2021).

These two curvatures are denoted by
k and k,

These maximum and minimum curvatures always occur
at right angles to one another. The corresponding radii
of principal curvatures are called principal radii and are
denoted by

Poond P,

The visualization given in Figure 3 and Figure 4, it helped
students to understand the dynamics of principal curvature.
They experienced that these maximum and minimum
curvatures always occur at right angles to one another.
Also, it is discussed the differential equation of principal
curvature, which is reported as

k 2(EG-F2)-k (EN-2FM+GL)+(LN-M?)=0

In this definition, the first curvature is
 EN-2FM+GL

Ko+ K==

The mean curvature is

kqtiy _ EN—2FM+GL

2 2(EG-F?)

The gaussian curvature is

LN-M?

Kakp™ Toore

Findings and Discussion

The findings of this PAR indicated that interactive JavaScript-
based visualizations enhance students’ conceptual
understanding. For example, normal sections and its
normal curvature. Similar results are also discussed in a
literature, which has mentioned that, “dynamic visuals can
support visual imagery as concept image, ir support for
better understanding, and can be a guide for learning
motivation”(Bos & Wigmans, 2025).

The PAR was found instrumental to this research because
it helped in the student’'s mathematical progression by
treating each iterative loop of Plan, Action, Observation,
and Reflection (PAOR) to scaffold the “concept image” of
principal curvature. This iterative process helped students to
distinguish the four fundamental characteristics (a) normal
and oblique sections (b) normal curvature (c) principal
sections and (d) principal curvature. The loop was based on
PAOR framework in different directions through dynamic
Mathematica and JavaScript simulations.

Inthis research, the essence of ‘learning motivation’ has also
been justified. The visualization has given an opportunity
to the students to analyze how a plane intersects a given
surface so that they were able to differentiate between
normal and oblique sections as discussed above. The
visualizations helped to form a thoughtful ‘concept image’
of the ‘concept definition’. There are similar findings in
literature which argue that “visual helps to form concept
image”(Alkan & Ada, 2024; Erol & Saygi, 2024; Sulastri
etal., 2021).

Using this PAR, and interactive visualizations using JavaScript
and Mathematica, students were able to explore and
understand the concept of normal curvature and principal
sections through engaged and interactive participation. As
explained by TPACK theory(Herring et al., 2014; Mishra et
al., 2007), in this research students observed how rotating
planes intersect the surface to produce different curvatures.
These kinds of simulation helped them to identify the

Education and Development | Volume 35 | Issue 1 | 2026
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principal sections by drag and drop hands on experience.
Therefore, it is argued that “pedagogical and thoughtful
integration of technology use can support students’
conceptual understanding”, which is explained by number
of research works(Becerra-Romero et al., 2019; Caniglia
& Meadows, 2025; Dhakal, 2023). The JavaScript visual
dynamics conveyed a message to the students that ‘tangents
to principal sections are called principal directions, and that
these directions are orthogonal’. These dynamics helped
students to reinforcing textbook definitions and enhanced
mathematical intuition.

Based on iterative use of PAR cycles, students were able to
edify the concept of principal curvature, which as explained
by them, refers to the maximum and minimum values of
normal curvature at a point P on a surface S: r "=r " (u,v)
. They conceptualized that, these curvatures, denoted by
and , occur in orthogonal directions and their reciprocals
are known as the principal radii  and , which aligned with
textbook definition, for example Dhakal & Koirala; Pundit et
all(Dhakal & Koirala, 2024; Pundir et al., 2021).

The Mathematica and JavaScript visualizations enabled
students to dynamically explore how these curvatures
vary with direction and to identify the directions in which
they attain their extreme values. Students were engaged
with interactive simulations and formalize the differential
equation of principal curvature, which is

2(EG - F2) - (EN - 2FM + GL) + (LN - M2) = 0

Based on the equation, students were able to derive key
curvature measures. They also learned that the sum of
principal curvatures given by

EN—-2FM+GL
EG-F2

the mean curvature is
xgtp _ EN-2FM+GL
2  2(EG-F?)
and the Gaussian curvature is

Kq T Kp=

Ln-M*

EG-F?

These explorations were achieved through aided dynamic
visualizations. So, the result supported that student was able
to connect geometric intuition with analytical expressions,
while using dynamic visualizations. However, the study
acknowledge the essence of technology with TPACK
thought, which argue that, “visuals should be used aligning
with clear curricular goals”(Bos & Wigmans, 2025).

KaKp=

Based on results and discussions, this research found that
student better understand the concept of principal curvature
while using Mathematica and JavaScript modeling through
the concept image and connecting it with analytical
expressions, as concept definition.

Conclusion and Recommendations

This PAR, conducted through four iterative cycles,
demonstrated the effectiveness of interactive visualizations in
enhancing students’ understanding on ‘principal curvature’.

Based on results and discussions, it is concluded that,
Mathematica and JavaScript visualization helped students
to distinguish normal and oblique sections, to identify
principal sections and directions, and to comprehend the
analytical expressions of principal curvature.

Based on the findings, it is recommended that curricular
content should include technology-enhanced learning
modules that allow students to manipulate and explore
algebraic and geometric concepts dynamically. Further
research could be conducted to evaluate the long-term
impact of such visual tools on students’ mathematical
thinking and problem-solving abilities.
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