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Abstract 

The Golden Ratio, approximately 1.618, is a mathematical constant that has captivated 
the imagination of scholars, artists, architects, and scientists for centuries. This article 
delves into the mathematical underpinnings of the Golden Ratio, tracing its origins and 
historical significance in ancient civilizations and its evolution in mathematical theory. 
Known for its unique properties, the Golden Ratio is often associated with beauty, 
balance, and harmony, which has led to its widespread application in diverse fields. 
From the design of iconic architectural marvels like the Parthenon to its presence in 
Renaissance art, the Golden Ratio continues to inspire creativity. It also manifests in 
nature, evident in the arrangement of leaves, the spiral patterns of shells, and the 
structure of galaxies. In modern science, the Golden Ratio finds relevance in 
engineering, computer algorithms, and even financial models. This exploration 
underscores its enduring allure, showcasing its theoretical elegance and practical utility 
across time and disciplines. 
Key words: Golden ratio, Fibonacci number, Golden rectangle, Golden spiral, 
Fibonacci spiral. 

Introduction 
 

The Golden Ratio, denoted by the Capital Greek letter Φ (phi), is an irrational number 
that appears in various aspects of mathematics, art, architecture, and nature. Defined 
algebraically as (1 + √5)/2, the Golden Ratio has been studied since ancient times and is 
often associated with aesthetic beauty and harmony [Akhtaruzzaman & Shafie 
(2011),p:1-22]. The golden ratio is associated with the Fibonacci sequence in a very 
simple way. The sequence is an example of a quadratic recursive equation sometimes 
used to describe various scientific and natural phenomena such as age-structured 
population growth. This article provides a comprehensive overview of the Golden 
Ratio, tracing its historical roots, mathematical properties, and diverse applications. In 
the following sections, first the golden ratio is defined mathematically and introduces 
later from geometrical point of view. Its appearance in nature, modern technology and 
architecture are reviewed very briefly.  



Historical Background 
 

The golden section constant has incomparably richer history dating from ancient times, 
from Egypt to ancient Greece. Parthenon, whose construction started in 447 BC, was 
designed in the golden section proportions
Ratio dates back to ancient civilizations. The earliest known references to the ratio 
appear in Euclid's "Elements" around 300 BCE. Euclid described it as the division of a 
line into two segments such that the ratio of the whole line to the longer segment is the 
same as the ratio of the longer segment to the shorter one. That is, 
Euclid of Alexandria, the most prominent mathematician of antiquity, gathered and 
arranged 465 propositions into thirteen books, entitled The Elements, denote by [AB] 
and AB the closed line segment with endpoints A and B and its length, respectively.                                          

 

 

 

 

 

Figure 1. The mean proportion AE : AB :: AB : BE

In the Book VI, given a segment AE, find the point B for which AE/AB = AB/BE.  We 
show his construction in Fig
square ABCD and let M be the midpoint of AB. Construct the line segment MD. Draw 
a circle with center at M and radius MD so that it cuts A

In modem notation, we have t

Now, since AE = AB + BE, or AE = 1 + BE, we can write: AE = 

easily show that AE/AB = AB/BE. The length AE, 

the golden ratio, or the divine proportion. In th
called the golden rectangle. The history of the golden ratio pre
In modem notation, we have the lengths, known as the golden ratio has always existed 
in mathematics, it is unknown exactly when it was firs
mankind. It is reasonable to assume that it has perhaps been discovered and 
rediscovered throughout history, which explains why it goes under several names, such 
as golden section, golden mean, golden number, divine proportion, 
golden proportion. 
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The golden section constant has incomparably richer history dating from ancient times, 
from Egypt to ancient Greece. Parthenon, whose construction started in 447 BC, was 

section proportions [Dunlap (1997)]. The concept of the Golden 
Ratio dates back to ancient civilizations. The earliest known references to the ratio 
appear in Euclid's "Elements" around 300 BCE. Euclid described it as the division of a 

ts such that the ratio of the whole line to the longer segment is the 
same as the ratio of the longer segment to the shorter one. That is, about 300 B.C., 
Euclid of Alexandria, the most prominent mathematician of antiquity, gathered and 

itions into thirteen books, entitled The Elements, denote by [AB] 
and AB the closed line segment with endpoints A and B and its length, respectively.                                          

Figure 1. The mean proportion AE : AB :: AB : BE 

In the Book VI, given a segment AE, find the point B for which AE/AB = AB/BE.  We 
show his construction in Figure 1 in order to generalize it later. Start with the unit 
square ABCD and let M be the midpoint of AB. Construct the line segment MD. Draw 
a circle with center at M and radius MD so that it cuts A- at the point E. So, MD = ME. 

In modem notation, we have the lengths, ME = √�� ,  MB = 
��, BE = √���� . 

Now, since AE = AB + BE, or AE = 1 + BE, we can write: AE =  ��√�� . Thus, we can 

easily show that AE/AB = AB/BE. The length AE, 
��√�� , is denoted by  Φ, and is called 

the golden ratio, or the divine proportion. In the above figure, the rectangle AEFD is 
called the golden rectangle. The history of the golden ratio pre-dates Euclid.
In modem notation, we have the lengths, known as the golden ratio has always existed 
in mathematics, it is unknown exactly when it was first discovered and applied by 
mankind. It is reasonable to assume that it has perhaps been discovered and 
rediscovered throughout history, which explains why it goes under several names, such 
as golden section, golden mean, golden number, divine proportion, divine section and 
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During the Renaissance, artists and architects such as Leonardo da Vinci and Luca 
Pacioli embraced the Golden Ratio, believing it to be a divine proportion that embodied 
perfection and beauty. Da Vinci's "Vitruvian Man
Proportione" highlight the Golden Ratio's influence on art and design.
 

To explore the Golden Ratio, a combination of mathematical tools and geometric 
constructs were employed, illustrating its presence
contexts. Analytical methods such as algebraic derivations, geometric representations, 
and computational visualizations were used to validate the properties of the Golden 
Ratio. Historical tools like compass and straighte
classical constructions, while modern software aided in visualizing complex patterns 
and relationships. The study utilized algebraic equations, Fibonacci sequences, and 
dynamic geometry software to demonstrate the ubiquitou
across various domains. To bridge historical and modern perspectives, tools ranging 
from simple diagrams to advanced computational algorithms were integrated into the 
analysis. 

Mathematical Properties of 
Two quantities a and b are said to be in the golden ratio 

 

 
 
 
 
 
 
 
 
 
 
One method for finding the value of ��	� 
 1 � 	� 
 1 � �

Φ
.  

Therefore, � 
 1 � ��. …………………….(1)

This gives �� � � � 1 
 0
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During the Renaissance, artists and architects such as Leonardo da Vinci and Luca 
Pacioli embraced the Golden Ratio, believing it to be a divine proportion that embodied 
perfection and beauty. Da Vinci's "Vitruvian Man" and Pacioli's treatise "De Divina 
Proportione" highlight the Golden Ratio's influence on art and design. 

Tools and Methods 
To explore the Golden Ratio, a combination of mathematical tools and geometric 
constructs were employed, illustrating its presence in both theoretical and practical 
contexts. Analytical methods such as algebraic derivations, geometric representations, 
and computational visualizations were used to validate the properties of the Golden 
Ratio. Historical tools like compass and straightedge were revisited to understand 
classical constructions, while modern software aided in visualizing complex patterns 
and relationships. The study utilized algebraic equations, Fibonacci sequences, and 
dynamic geometry software to demonstrate the ubiquitous nature of the Golden Ratio 
across various domains. To bridge historical and modern perspectives, tools ranging 
from simple diagrams to advanced computational algorithms were integrated into the 

Result and discussion 
 

Mathematical Properties of golden ratio 
Two quantities a and b are said to be in the golden ratio Φ if � � �� 
 �� 
 Φ. 

One method for finding the value of Φ is to start with the left fraction. 

. …………………….(1) 

…………………..(2) 

During the Renaissance, artists and architects such as Leonardo da Vinci and Luca 
Pacioli embraced the Golden Ratio, believing it to be a divine proportion that embodied 

" and Pacioli's treatise "De Divina 
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Straightforward application of the quadratic formula results in � 
 ��√��  ≈ 1.618. The 

negative of the negative root of the quadratic equation (2) is what we will call the 

golden ratio conjugate φ, (the small Greek letter phi), and is equal to φ 
 √����   ≈ 0.618. 

The relationship between the golden ratio conjugate φ and the golden ratio Φ, is given 

by φ = Φ − 1, or using (1), φ =
�
Φ
. 

Golden ratio in a continued fraction: 
One of the wonderful presentations of golden ratio on a continued fraction is as shown: 

Ф 
 1 � 1
1 � 11 � 11 � 11�⋱

 

This continued fraction produces a quadratic equation � 
 1 � ��, 

Or, �� � � � 1 
 0. 
Golden ratio in a continued square root: 
Another wonderful presentation of golden ratio on a continued square root is as shown: 

� 
 �1 � �1 � √1 � ⋯ 

                                                               Or, � 
 √1 � � 
Squaring both sides 

                                                              Or,     �� 
 1 � � 

                                                            Or, �� � � � 1 
 0   
Golden ratio in a Fibonacci sequence 
The golden ratio is associated with the Fibonacci sequence in a very simple way. The 
sequence is an example of a quadratic recursive equation sometimes used to describe 
various scientific and natural phenomena such as age-structured population growth. In 
order to define the general quadratic recursive formula, let x0, x1, p, and q be fixed 
positive numbers, and for any integer n > 2, define xn, as �� 
 ����� � �����      …………………….(3) 
Murthy [8] provides a number of theorems for this general recursive equation. It is clear 
that many of the features that are proclaimed to be unique to the Fibonacci sequence 
are, indeed, common to all second-order recursive equations. For example, � !�→∞ ��#��� 
 $. …………………(4) 

Where,  r is the positive root of the quadratic equation   
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�� � �� � � 
 %. …………………(5) 
obtained by assuming that xn, = x" is a solution to (1). One of our objectives in this 
paper is to show that if q = 1 and r is the limit in (2), then the pair (r, p) has all of the 
geometric and algebraic properties that are often ascribed as being unique to the pair 
(Φ,1) . For example, we have  

 & � ' 
 �( 

Corresponding to the property,  � � 1 
 ��. 

Or,                                                 �� � � � 1 
 0 
The recursion relation for the Fibonacci numbers is given by )*�� 
 )* � )*��. 

Dividing by )* yields +,#-+, 
 1 � +,.-+, ………………..(6) 

We assume that the ratio of two consecutive Fibonacci numbers approaches a limit as / → ∞. Define limit  lim*→∞ +,#-+, 
 3 so that  lim*→∞ +,.-+, 
 �4 . Taking the limit, (6) 

becomes α = 1 + 1/α, the same identity satisfied by the golden ratio. Therefore, if the 
limit exists, the ratio of two consecutive Fibonacci numbers must approach the golden 
ratio for large n, that is, lim*→∞ +,#-+, 
  �. 

The ratio of consecutive Fibonacci numbers and this ratio minus the golden ratio is 
shown in Table 1. The last column appears to be approaching zero. 
 

Table 1: Ratio of consecutive Fibonacci numbers approaches �. 
 
                                                

n         
+,#-+,           value                

+,#-+, � �                                                                                                                             

1           1/1                1.0000         -0.6180 

2           2/1              2.0000            0.3820 

3           3/2            1.5000              -0.1180 

4           5/3            1.6667              0.0486 

5            8/3            1.6000             -0.0180 

6            13/8            1.6154           -0.0070 

7            21/13          1.654             -0.0026 

8              34/21          1.6190         0.0010 

9             55/34            1.6176        -0,0004 

10             89/55         1.6182         0.0001 
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Applications in Art and Architecture 
The golden rectangle 
A golden rectangle is a rectangle whose side lengths are in the golden ratio. In a 
classical construction, first one draws a square. Second, one draws a line from the 
midpoint of one side to a corner of the opposite side. Third, one draws an arc from the 
corner to an extension of the side with the midpoint. Fourth, one completes the 
rectangle. The procedure is illustrated in Fig. 2. 

 
                           
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1. Classical construction of the golden rectangle 

The golden spiral 
The celebrated golden spiral is a special case of the more general logarithmic spiral 
whose radius r is given by 

 & 
 �5	6 ……………………(7) 
where, θ is the usual polar angle, and a and b are constants. Jacob Bernoulli (1655-
1705) studied this spiral in depth and gave it the name spira mirabilis, or miraculous 
spiral, asking that it be engraved on his tombstone with the enscription “Eadem mutata 
resurgo”, roughly translated as “Although changed, I arise the same.” A spiral was 
engraved at the bottom of his tombstone, but sadly it was not his beloved logarithmic 
spiral. 
The golden spiral is a logarithmic spiral whose radius either increases or decreases by a 

factor of the golden ratio � with each one-quarter turn, that is, when θ increases by π/2. 
The golden spiral therefore satisfies the equation 

 & 
 ��789  …………….. (8)  
In our figure of the spiraling squares within the golden rectangle, the dimension of each 

succeeding square decreases by a factor of �, with four squares composing each full 
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turn of the spiral. It should then be possible to inscribe a golden spiral within our figure 
of spiraling squares. We place the central point of the spiral at the accumulation point of 
all the squares, and fit the parameter a so that the golden spiral passes through opposite 
corners of the squares. The resulting beautiful golden spiral is shown in Fig. 3. 

  
 
 
 
 
 
 
 
 

 

Figure 2.1. The golden spiral, the central point is where the squares accumulate 
 

The Fibonacci spiral 
Consider again the sum of the Fibonacci numbers squared:  ∑ );�*; 
 )*)*�� ………………………..(9) 

 

This identity can be interpreted as an area formula. The left-hand-side is the total area of 
squares with sides given by the first n Fibonacci numbers; the right-hand-side is the area 

of a rectangle with sides )* and )*��.  
For example, consider n = 2. The identity (8) states that the area of two unit squares is 
equal to the area of a rectangle constructed by placing the two unit squares side-by-side, 
as illustrated in Fig. (3.1.a.) 

 
 
 
 
 
 
 

 
 
 
(a) n=2: 1� � 1� 
 2                                            (b)  n=3: 1� � 1� � 2� 
 6 

Figure 3.1.  Illustrating the sum of the Fibonacci numbers squared. The center numbers 
represent the side lengths of the squares. 
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Figure 3.2. The sum of Fibonacci numbers squared for n = 6. The Fibonacci spiral is 
drawn 

 

For n = 3, we can position another square of side length two directly underneath the first 
two unit squares. Now, the sum of the areas of the three squares is equal to the area of a 
2-by-3 rectangle, as illustrated in Fig. (3.1.b.) The identity (9) for larger n is made self-
evident by continuing to tile the plane with squares of side lengths given by consecutive 
Fibonacci numbers.  
The most beautiful tiling occurs if we keep adding squares in a clockwise, or 
counterclockwise, fashion. Fig. (3.2) shows the iconic result obtained from squares 
using the first six Fibonacci numbers, where quarter circles are drawn within each 
square thereby reproducing the Fibonacci spiral.  

Self-similar decompositions of rectangles of any ratio and spirals: 
For any r > 1, and any rectangle R with a ratio of r to 1, we can divide R into two 
smaller rectangles, one of which has the same ratio r to 1, and this in turn can be so 
divided etc., as in Figure 2. The coordinates of the verticesA1, A2, A3, A4, A5, A6,…  are 
given below.   

 
 
 
 
 
 
 
 
 
 

Figure.11. A rectangle of dimensions r to 1, with similar sub rectangles and a spiral  

A1=(0,0), A2=(
(��( , 1),  A3=(r,

�(7),A4 = (r- �( � �(7 , 0), A5 = (& � �( � �(7 � �(A , �(7) 

The vertices A1, A2, A3, ... converge to a "center-point,"    ( (B
��(7 , ���(7). 
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Spirals.  An equiangular spiral can be drawn through the points A1, A2, A3, ... in Figure 

2. Just use the center point   ( (B
��(7 , ���(7) . The central point is where the squares 

accumulate. 
and fit a polar equation for the logarithmic spiral through any two of these points[5]. It 
is a general property of all such spirals that the tangents to the spiral at any point make a 
fixed angle with the rays from the center point[ Markowsky,(1992),P:2-19]. 
 
Artists and architects have long utilized the Golden Ratio to create visually pleasing 
compositions. In painting, the Golden Ratio is often employed to structure the layout 
and proportions of the canvas. Notable examples include works by Leonardo da Vinci, 
Salvador Dalí, and Piet Mondrian. 
In architecture, the Parthenon in Athens and the pyramids of Egypt are believed to 
incorporate the Golden Ratio in their design. Modern architecture also embraces this 
ratio; the United Nations Headquarters and the Guggenheim Museum are examples of 
buildings influenced by φ. 

Golden ratio  in nature 
The Golden Ratio appears in various natural phenomena, reflecting its fundamental role 
in the growth and structure of living organisms. Examples include: 
a. Phyllotaxis: The arrangement of leaves, seeds, and flowers often follows a spiral 

pattern governed by the Golden Ratio, optimizing exposure to sunlight and space 
efficiency. 

b. Animal Morphology : The proportions of certain animal bodies, such as the spirals 
of shells and the branching of trees, exhibit the Golden Ratio. 

c. Human Anatomy: The human body, including the proportions of the face and 
limbs, can be analyzed through the lens of the Golden Ratio, contributing to 
perceptions of beauty and symmetry. 

d. Leonardo Da Vinci: Many artists who lived after Phidias have used this proportion. 
Leonardo Da Vinci called it the ‘Divine Proportion’ and  feathers it in many of his 
paintings for example in the famous “Mona Lisa”  

e. The vitruvian Man: Leonardo did an entire exploration of the human body and the 
ratios of the lengths of various body parts. The vituvian man illustrates that the 
human body is proportioned according to golden ratios.  

f. The Parthenon: The exterior dimensions of the in Parthenon in Athens, built in 
about 440BC, form a perfect rectangles. 

g. Egyptian pyramids: The base lengths of pyramids divided by height of them gives 
a golden ratio. 

h. Sea shells: The shape of inner and outer surfaces of the sea shells. 
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i. Petals of Flowers: Many flowers have a number of petals that is a Fibonacci 
number. The arrangement of petals often exhibits the Golden Ratio, optimizing 
exposure to sunlight and space. 

j.  Galaxies: Spiral galaxies, such as the Milky Way, follow a logarithmic 
spiral pattern, which is closely related to the Golden Ratio. 

k. Hurricanes: Hurricanes display a spiral pattern similar to that of galaxies and 
shells, adhering to the logarithmic spiral that approximates the Golden Ratio. 

l. Photography: Photographers use the Golden Ratio to compose images that are 
aesthetically pleasing. The Rule of Thirds is a simplified version of this principle, 
dividing an image into sections that are pleasing to the eye. 

m. Spider-Webs: Some spiders build webs with spiral patterns that follow the 
Golden Ratio, optimizing the structural efficiency and strength of the web. 

n. Pinecones: The scales of pinecones are arranged in a spiral pattern, with the 
number of spirals typically corresponding to Fibonacci numbers, demonstrating 
the Golden Ratio. 

Modern Scientific Applications 
In contemporary science and technology, the Golden Ratio continues to find relevance. 
It appears in the analysis of financial markets, where certain trading algorithms utilize � for predictive modeling. Additionally, the ratio is explored in computer graphics and 
design, where it aids in creating harmonious and visually appealing interfaces. 
Like the golden ratio in art and architecture, this balance leads to more elegant and 
effective AI solutions. Achieving the golden ratio of AI requires both technical expertise 
and an understanding of human needs and preferences. When AI systems are designed 
with the golden ratio in mind, they are more likely to provide meaningful and useful 
insights to users. Overall, the golden ratio of AI represents an exciting opportunity to 
create smarter, more human-centered technology solutions [Thapa & Thapa (2018), 
P:188-199]. 

Conclusion 
The Golden Ratio remains a captivating and multifaceted concept that bridges 
mathematics, art, nature, and modern science. Its unique properties and widespread 
occurrences underscore its significance and enduring appeal. As research continues, the 
Golden Ratio is likely to reveal even more about the intrinsic harmony and structure of 
the world around us. 
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