LINEAR OSCILLATION OF THE INTER-CONNECTED SATELLITES UNDER THE INFLUENCE OF MAGNETIC FORCE OBLATENESS OF THE EARTH AND THE SHADOW OF THE EARTH DUE TO SOLAR RA-DIATION PRESSURE ABOUT THE POSITION OF EQUILIBRIUM FOR SMALL ECCENTRICITY NEAR THE MAIN RESONANCE =1

Nabonarayan Jha

Dept. of Mathematics, Patan Multiple Campus, Patan Dhoka, Lalitpur, Tribhuvan University, Kathmandu.

Jay Narayan Jha

Department of Mathemathics, Padmakanya Multiple Campus, Tribhuvan University, Kathmandu.

ABSTRACT

This paper is devoted to study the non-linear oscillation along the stable position of equilibrium where the system oscillates about the position of equilibrium like a dumb-bell satellite with constant amplitude and phase varying with true anomaly. B.K.M. method has been exploited to get the general solution valid at and near the main resonance n = 1.

KEYWORDS : Okhotsimsky, non-linear, Equilibrium, Resonance, Oscillatory, Orbit, Solar radiation, gravitational.

INTRODUCTION

The Russian Mathematician Okhotsimsky and Saricher (1963) made significant studies on the effect of different perturbative forces on a cable connected satellites system. Similar problems have also been studied in details by Singh; R.B. (1972).

1. Linear Oscillation of the system about the position of equilibrium for small eccentricity.

The equation of motion of a satellite in the central gravitational field of force of oblate earth together with magnetic force and shadow of the earth due to solar pressure in polar form is given by

 $(1 + e\cos v)\Psi'' - 2e\Psi' \sin v + 3\sin \psi \cos \Psi = 2 e \sin v + 5A (1 + e\cos v)^2 \sin \Psi \cos \Psi + B_0 P^3$ (cosasin Ψ - sin α cos Ψ) + C[1 + e cos v) sin Ψ - e sin v cos Ψ] ... (1)

Where,

A = - (const.) oblatness parameter

 $B_0 =$

B = Solar pressure parameter

C = Magnetic force parameter

 $\mathbf{P} =$

Where e is the eccentricity, p is the focal parameter, v is true anomaly of the centre of mass and das has denote differentiation w.r. to v

The equilibrium position is given be

$$\phi = \phi_0 = 0 \text{ and } \Psi = \Psi_0 = \frac{\frac{-B \sin \theta \sin \alpha}{\pi}}{3 - 5A - C \frac{B \sin \theta \cos \alpha}{\pi}}$$
$$= \frac{B_0 \sin \alpha}{3 - 5A - C - B_0 \cos \alpha} \dots \dots \dots (3)$$

The equation of small oscillation about the position of equilibrium obtained by putting $\Psi = \Psi_0 + \eta$ upto first order infinitesimal is given by

$$\eta'' + n^{2}\eta = e \left[2\sin v - \eta''\cos v + 2\eta'\sin v + 10A\left\{\eta - \frac{B_{o}\sin\alpha}{3 - 5A - C - B_{0}\cos\alpha}\right\}\left\{1 + \frac{\eta B_{o}\sin\alpha}{3 - 5A - C - B_{0}\cos\alpha}\right\}\cos v + c\cos v + c\sin v + c\cos v$$

Where.

where,

$$n^{2} = (3 - 5A) \left\{ 1 - \frac{B_{0}^{2} \sin \alpha}{(3 - 5A - C - B_{0} \cos \alpha)^{2}} \right\} - B_{0} \cos \alpha + \frac{B_{0}^{2} \sin^{2} \alpha}{3 - 5A - C - B_{0} \cos \alpha} - C \dots (5)$$

Now let us construct the general solution of the oscillatory system based on B.K.M. method which will be valid at and near the main resonance n = 1. Assuming 'e' to be a small parameter, the solution in the first approximation of the equation (4) at the main resonance n = 1 can be sought in the form :

$$\eta = a \cos k$$

Where, $k = v + \theta \dots (6)$

Where amplitude 'a' and phase ' θ ' must satisfy the system of ordinary differential equations –

$$\frac{da}{dv} = e A_1 (\alpha, \theta)$$

$$\frac{d\theta}{dv} = n - 1 + eB_1 (a, \theta)$$
 ... (7)

Where amplitude 'a' and phase must satisfy the system of ordinary differential equations

Here $A_i(a, \theta)$ and $B_i(a, \theta)$ are periodic solutions periodic with respect to θ of the system of partial differential equations:

$$(n-1)\frac{\partial A_1}{\partial \theta} - 2anB_1 = \frac{1}{\pi} \int_0^{2\pi} f_0(v, \eta, \eta', \eta'') \operatorname{coskdk}$$

and $a(n-1)\frac{\partial B_1}{\partial \theta} + 2nA_1 = \frac{1}{\pi} \int_0^{2\pi} f_0(v, \eta, \eta', \eta'') \operatorname{sinkdk} \dots (8)$
Where $f_0(v, \eta, \eta', \eta'') = 2 \sin v + an^2 \operatorname{coskcosv} - 2ansinksinv + 10 A a \operatorname{cosk} \operatorname{cosv}$

$$\begin{cases} 1 - \frac{B_0^2 \sin^2 \alpha}{(3 - 5A - C - B_0 \cos \alpha)^2} \begin{cases} \frac{1 - B_0^2 \sin^2 \alpha}{(3 - 5A - C - B_0 \cos \alpha)^2} \end{cases}$$
$$- 3B_0 a \cos k \cos v \cos \alpha + \frac{3B_0^2 \cos v \sin \alpha \cos \alpha}{3 - 5A - C - B_0 \cos \alpha} + 3B_0 \cos v \sin \alpha + \frac{3B_0^2 \sin^2 \alpha \arcsin k \cos v}{3 - 5A - C - B_0 \cos \alpha} + c a \cos k \cos v \cos \alpha \end{cases}$$
$$- \frac{CB_0 \cos v \sin \alpha}{3 - 5A - C - B_0 \cos \alpha} - \frac{CB_0 \sin v \sin \alpha a \cos k}{3 - 5A - C - B_0 \cos \alpha} c \sin v \dots (9)$$

Substituting the value of $f_0(v, \eta, \eta', \eta'')$ from (9) on the R.H. side of (8) and then integrating, we get from (8)

$$(n-1)\frac{\delta A_{1}}{\delta \theta} - 2anB_{1} = -\mu \sin \theta + \nu \cos \theta$$

and $a(n-1)\frac{\delta B_{1}}{\delta \theta} + 2nA_{1} = -\mu \cos \theta + \nu \sin \theta$...(10)

Where $\mu = 2 - c$

and
$$v = 3B_0 \sin \alpha + \left(\frac{3B_0 \sin \alpha \cos \alpha - B_0 C \sin \alpha}{3 - 5A - c - B_0 \cos \alpha}\right) \dots (11)$$

Now, the periodic solution with respect to $\boldsymbol{\theta}$ of the system of equation (10) can be easily obtained as

$$A_{1} = -\frac{1}{(n+1)} (\mu \cos \theta + \nu \sin \theta)$$
$$B_{1} = \frac{1}{a(n+1)} (\mu \sin \theta - \nu \cos \theta)$$
.....(12)

and

$$\frac{da}{dv} = \frac{-e}{(n+1)} (m \cos\theta - v \sin\theta)$$

and $\frac{d\theta}{dv} = (n-1) - \frac{e}{(n+1)} (-\mu \sin\theta + v \cos\theta)$(13)

The system of equations (13) can be written as

$$\frac{\mathrm{d}\alpha}{\mathrm{d}\nu} = \frac{1}{a} \frac{\partial \phi}{\partial \theta} = -\frac{1}{a} \frac{\partial \phi}{\partial \theta} \dots \dots (14)$$

Where
$$\phi = \frac{\alpha e}{n+1} (\nu \cos \theta - \mu \sin \theta) - \frac{(n-1)a^2}{2}$$

Clearly, $\phi = \phi_0$ is the first integral

Received : October 2020

Accepted : December 2020

In order to examine the stability, the integral curve (14) have been blotted in phase plane (a, v) in the form

 $(n^2 - 1) a^2 - 2a e(v \cos \theta - \sin \theta) + Co = C \dots (15)$

Where Co = 2 (n = 1) $\phi_0 = constant$

Integral curves have been plotted in fig 1 and fig 2 for n=.95 and n=1.2 respectively for different values of a,e,v, μ and Co. Since both curves are closed so we get the stability.

Received : October 2020

Accepted : December 2020

REFERENCE

- 1. Lantukh D., Russell R. P., Broschart S., 2015, Celestial Mechanics and Dynamical Astronomy, 121, 171
- 2. Manaziruddin, Singh R.B., 1992, Celest, Mech, 53, 219.
- 3. Pyragas K.A., Zhdanov V.I., Alexendrov Singh, R.B. Proc. Nat. Aca. Sc. India 43(A) IV 1976
- 4. Demine, V. G. Nauka; Moscow, 1968 (Russian)
- 5. Priyam, Aradhya : Ph.D. thesis, submitted for Ph.D. Degree, B.R.A Bihar University, Muzaffarpur, Sept. 2013.
- 6. Anselmo L., Cordelli A., Farinella P., Pardini C., Rossi A., 1996, Study on long term evolution of Earth orbiting debris, ESA/ESOC contract No. 10034/92/D/IM(SC)
- 7. Beutler G., 2005, Methods of Celestial Mechanics II: Application to Planetary System, Geodynamics and Satellite Geodesy, Springer-Verlag, Berlin Heidelberg
- 8. Brouwer D., Clemence G M., 1961, Methods of Celestial Mechanics, Academic Press, New York
- 9. Colombo C., Rossi A., Dalla Vedova F., 2017, International Astronautical Congress IAC-2017, paper IAC-17.A6.2.8
- 10. Cook G. E., 1962, The Geophysical Journal of the Royal Astronomical Society, 6, 271
- 11.Frouard J., Fouchard M., Vienne A., 2010, A&A, 515, A54
- 12. Frouard J., Fouchard M., Vienne A., 2010, A&A, 515, A54 Hughes S., 1977, Planetary and Space Science, 25, 80
- 13.A.N., and Pyragas, L.E: 1978, Astrophys. Space Sci. 57, 305.
- 14. Sinha S.K., Singh R.B., 1988. Astrophys Space Sci, 140, 49.
- 15. Sinha S.L., Singh R.B., 1987, Astrophys. Space Sci. 129, 233.