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Abstract.

The calculus without the notion of limits is quantum calculus. Its study dates back
to L. Euler in the middle of the eighteenth century whereas the systematic initiation
on it was done by F.H. Jackson in the beginning of the twentieth century. The rapid
growth on g-calculus is due to its applications in various branches of mathematical and
physical streams. Of them, one of the most basic and important functions in the theory
of geometric function is convexity having its wider applications in pure and applied
mathematics. As it still lacks the intensive study on quantum estimates on the various
types of integral inequalities, we focus our study on quantum estimates of Hermite-
Hadamard type integral inequality especially on coordinated convex functions. In this
paper, we have extended Hermite-Hadamard type integral inequality for coordinated

convex function in terms of quantum framework.
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1. INTRODUCTION

The modern name for the investigation of calculus without limits is quantum calculus.
The pioneering work on ¢- calculus was done by L. Euler on Newton’s work on infinite
series in 1748. Later on, it was enhanced by Gauss and Heine by introducing gq-
hyper-geometric function. Multiple areas of mathematics and physics, including number
theory, fundamental hyper-geometric functions, combinatorics, orthogonal polynomials,
mathematical inequalities, quantum theory, mechanics, and the theory of relativity, all have
numerous uses for the subject of quantum calculus, and, hence the g-calculus is appeared as
an inter-disciplinary subject between mathematics and physics, a blend of the subjects. For
detail see these [3, 4] The systematic study on ¢-calculus is made by F.H. Jackson in the
beginning of the 20th century by introducing q-derivative and ¢-integral. In 1908, F.H.
Jackson reintroduced the Euler- Jackson g¢-difference operator as follows:

Definition 1.1. [4] The ¢-derivative of a continuous function f is defined as

f(B) — f(gt)

t € (0,b), qeC\{1} (1.1)

for f:(0,0) > R, 0<b<oo.

In 1910, Jackson also introduced the concept of ¢-definite integral extending the idea of
q -definite integral as follows:

Definition 1.2. [4] The ¢- definite integral is defined as

[t =0 -aa X a s, e 0.

Tariboon et. al in 2013 [7] defined the g¢-derivative in a finite interval as follows:

Definition 1.3. The ¢-derivative of a continuous f : [a,0] C R — R at a point ¢t € J
on|a,b] is defined as

f(t) = flgt+ (1 — q)a)

aqu(t) = (1 — t)(l — Q) >

t#a
and,

2Dy f(a) = lim aD, f(t).
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If a =0, then (D,f = D,f, where D, is well known g¢-derivative of the function f(¢)
defined as in (1.1)

Tariboon et. al[7] defined ¢- integral in a finite interval J = [a, ] as follows.

Definition 1.4. Let f : J — R be a continuous function. Then the ¢ -integral on J is
defined by

b ]
[ 10t = (1= )a=5) D" F(qa+ 1= gD)
@ n=0
for x € J.
Now, we define the convex function as follows:
Definition 1.5. [6] Let f: I C R — R, be a real valued function. Then, the function f is

said to be a convex function, if the inequality

flta+ (1 —8)b) <tf(a) + (1L —1)f(b)

holds, for all a,b € I, and,t € [0, 1]

If ¢ =1, then the convex function f satisties the following inequality:

; <a + b) _ f@)+f()

2 - 2
for all a,b €I and t € [0,1] which is called Jensen’s inequality.
Next, we define the convexity of the function f in coordinates as follows:
Definition 1.6. A function f : [a,0] X [¢,d] = A — R is convex on A if the following
inequality holds:

flx+ (1 —-t)z,ty+ (1 —t)w) <tf(x,y)+ (1 —1)f(z,w)

for all (z,y),(z,w) € A, t €[0,1]

Dragomir [2] reintroduced the convexity of the function f on coordinates as follows:

Definition 1.7. Let us consider the bi-dimensional interval A = [a,b] X [¢,d] C R? with
a <b c<d. A function f: A — R is said to be convex on the coordinates if the partial
mapppings f, : [a,0] = R, f,(u) = f(u,y) and f, : [c,d] = R, f,(v) = f(x,v) are
convex for all y € [¢,d], =z € [a,D].
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Latif et. al [5] gave a more formal definition of coordinated convex function which is stated

as follows:

Definition 1.8. A function f: A = [a,b] X [¢,d] C R? is a coordinated convex on A if the
following inequality holds for all s,¢ € [0, 1]

flz+ 1=ty sz+ (1 —s)w) <tsf(x,z) +t(1—s)f(x,w)+s(1—1)f(y,2) + (1 —=t)(1—3s)f(y,

2. PRELIMINARY RESULTS

One of the most famous and intensively studied inequalities in literature for the class of
convex function, a necessary and sufficient condition for the function to be convex, is the
Hermite-Hadamard inequality which is stated as follows:

Theorem 2.1. [§] Let f:[a,b] CR — R be a convex function defined on an interval [a,b]
of real numbers a,b € R with a <b. Then we have

1(5) <5t o L8220

The inequalities hold in reverse direction if the function f is concave.

Tariboon et al [§] in 2014 extended HH inequality in ¢ framework as follows: Let
f :[a,b] = R be a continuous function on [a,b] and 0 < ¢ < 1 be a constant. Then,

(%57 <

Kunt and Iscan in 2016 gave a counter example to the above inequality and showed that

we have

_ af(a) + /()
l1+gq

the left-hand side of the above inequality is not correct, and provided the correct form of ¢-
Hermite-Hadamard inequality which is stated as follows:

Theorem 2.2. [1] Let f : [a,b] — R be a convex differentiable function on (a,b) and
0<qg<1 bea constant. Then, we have

f<Qa2—|—b> <! /f < f(l)jqf()

Alp et al in 2018 presented the generalized ¢-Hermite- Hadamard integral inequality as

follows:

w)
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Theorem 2.3. [1] Let f : [a,b] — R be a convex differentiable function on (a,b) and
0<q<1 bea constant. Then, we have

b b
max{[l,fg,lg} < bia/; f(ll')adqx & %_qu()

where,

]2:f<a+qb) +(1—Q)(b—a)f,<a+qb)

144¢ 144¢ 1+4¢q
. fa+b (1—q)(b—a), (a+Db
wes () g (45

S.S. Dragomir [2] in 2001 presented the Hermite-Hadamard inequality for the coordinated

convex functions follows:

Theorem 2.4. Let f: A = [a,b] X [¢,d] C R? = R be a coordinated convex function on

A . Then,
b d
L)ia/ f<:c’0-!2-d> dx+—dic/ f(a;_b,y> dy]
b pd
Sm//f(xay)dxdy

<3t [vwmosswanas 2 [+ 5o a]

< f(a.0) + fla,d) + f(b,c) + f(b,d)
- 4

The above inequalities are sharp.

In this paper, we extend Hermite-Hadamard type integral inequality for the coordinated
convex function which was established by Dragomir in terms of in ¢- calculus.

3. MAIN RESULTS

The ¢-Hermite-Hadamard type integral inequality for coordinated convex function is
established in the following theorem.

Theorem 3.1. Let f: A = [a,b] x [c,d] C R* = R be a coordinated convex function on
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A . Then,
ga+b qgc+d 11 1 /b gc+d 1 4 (qa+b
<= d
f<1+q’1+q>_2[b—aaf P 1rq i—c) T\T5gY) e
=) _C//fivy algredgy

dy + !

€) odyx

' 21+¢q)(b—a)
1

) e d).
Y) e qy+W/fby dqy
<1 *fla,¢) + af(a,d) + af (b, ) + f (b, d)

(1+9)?

q b

SHrot-wl, '
q

* 2(1+¢q)(d—c¢) /fa

The above inequalities are sharp.

Proof. As f : [a,b] X [¢,d] C R* — R is convex on the coordinates, it follows that the
mapping

9o i c,d) = R, g.(y) = f(z,y)

is convex on [c,d] for all x € [a,b] and 0 < ¢ < 1 be a constant. By using ¢-Hermite-

Hadamard integral inequality, we have

cg+d I q9.(c) + g.(d)
Oz < 1+q> < d_C/c gw(y)cdqy < Tq (3.1)
that is
d d
f< g ) <t / @, 9)edey < f<l’,cl)++;”(w7 ) (3.2)

By ¢ integrating with respect to x on [a,b] to the inequality (3.2), we have

1 B cq+d 1 i bqf(a:,c)—{—f(@d)
o (2 ) e < g [ [ fohtonae < [(EGERED
(3.3)

Similarly, the mapping g, : [a,0] = R, g,(z) = f(z,y) is convex on [a,b] for all y € [c,d]
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and 0 < ¢ <1 be a constant. By using ¢-Hermite-Hadamard’s inequality, we have

aqg+b 1/ —_qgy(a) + g,(b) /
9<1+q) — /gy()dqyfﬁ (3-4)
that is
qa+b f(a,y) + fby)
f<1+ >_—/fxy dy < 0L T T4 (3.5)

By ¢ integrating with respect to y to the above inequality on [c, d], we have

1t (qtb 1 b “(efley) + 1Y)
e [ () < s [ [ S < [ (P00 g,

(3.6)
Now, summing up the inequalities (3.3) and (3.6), we have
it [ (=) e [ ()
b
ém / / f (2. y)ellgyadyz
S% /ab qf(%j)ij(fﬁd) adqﬂ/cd(qf(a-/?i)jqf(b,y)) quy}
gmlbﬂncnd(,wm/bmm e /fay iy

1+q /fby dy (3.7)

Finally, using ¢ Hermite-Hadamard inequality, we have

1 bf(x)adqx < afla) +f(b)

L <y (38)
that is
ﬁ /bf(x,C)adq:c < W%Jrqf(b’c) (39)
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Thus, we have

q ’ g qfla,0)+ f(be) ¢ fla,c) 4+ qf(bc)
20+ ¢)(b — a) / 1(@:) oy = 21+ q) 1+gq T 21+ P (3.10)

Also, we have

v
2(1+¢)(b—a)

’ _ 1 gf(a,d)+ f(b,d) _ af(a,d)+ f(b,d)
/af(x,d)adqx—2(1+q> g =0T ep (3.11)

Similarly, we obtain

q ! _ @ f(a,0) +qf(a,d)
m/c fla,y) dyy = 2011 q)2 (3.12)
And, we also have in similar fashion that
1 ! _ af(,c) + f(b,d)
2(1 | q)(d . C) /; f(b7y) cdqy - 2(1 B q)g (313)
On summing up (3.10),(3.11),(3.12) and (3.13), we have
q b 1 b
a0 J, 1O+ ggp—a |, oD
q d
+ m/c fla,y) cdgy+
1 d
AT Ed—0) / f(b,y) cdgy
< ©f(a,0) +af(b.c) +qf(a,d) + f(b,d)
- (1+q)?
This completes the proof. O

Remark 3.2. If ¢ — 1, then the above inequalities reduces to Dragomir’s result on Hermite-

Hadamard integral inequality as stated in theorem (2.4).

4. CONCLUSION

In this paper, we have been able to extend Hermite-Hadamard type integral inequality
for coordinated convex function in terms of ¢ framework. This result definitely helps to
determine the bounds of the integral mean of the coordinated convex function in terms of
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