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Abstract

Traditional models are often not able to capture the (spatial) persistence phenomenon
found in air transport so that it is still a challenge predicting the spread of large-
scale contamination. In this paper, these long-term effects are accounted for in a one-
dimensional time-fractional advection-diffusion equation (Caputo definition) based
model. Uniform and non-uniform Dirichlet boundary conditions are applied to test
the model. The Eigen function expansion is employed to obtain an analytic solution
as it balances mathematical utility and physical understanding. More importantly,
it is rigorously shown that the solution is well-posed by utilizing the necessary basic
assumptions on the Lipschitz condition with regard to its proofs for the existence,
uniqueness, and continuous dependence on the initial input values for the solution.
This shows how the fractional calculus could be more precise with regard to the
characteristics related to the dispersion of the pollutant in the real world than being
confined to the completion of an equation for this task.

Keywords: Grunwald-Letnikov, eigenfunction, fractional time derivatives, numerical
simulations, advection-diffusion equation
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Introduction

The transport of pollutants between air and water and soil relies on principles of
heat transfer and mass transfer. Precise modeling of contaminant transport processes
in environmental protection and sustainability are crucial (Baumbach, 2012). The
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atmosphere itself is a source of secondary pollutants due to chemical reactions taking place
with direct emissions from traffic and industrial activities and fossil fuel burning. There
is established evidence that it poses a threat to human health and natural environments
(Kinney, 2018). Indeed, the main limitation in modeling exists with varied environments
because pollutants distribute themselves by following non-Fickian or “anomalous”
diffusion patterns. The inability to model complicated transport behavior by integer-
order advection-diffusion equations leads to a big gap between theoretical prediction
and real patterns in the environment (Ndlovu, 2024; Neuman & Tartakovsky, 2009).

The fractional calculus provides the solution to this representation gap. That is, the
fractional derivatives, which consist of characteristics of memory-based and long-range
dependency, have been suitable in modeling the anomalous transport phenomena arising
in nature (Metzler & Klafter, 2000; David et al., 2011). Then, the framework of fractional
calculus seems effective in modeling such intricate diffusion patterns in atmospheric and
hydrological systems (Tsai & Chen, 2004). One-dimensional time-fractional advection-
diffusion equation with variable diffusivity is effective in modeling pollutant dispersion
since it handles the complexity of the patterns existing in environmental data (Poudel et
al. 2023; Pariyar et al. 2025; Pariyar, S., & Kafle, J. 2024). Solution techniques for the
FADE are critical here, as they offer a direct source of robust theoretical understanding,
but more importantly, a sound benchmark for simulations. With the imposition of
Dirichlet boundary conditions, there are several solution techniques such as the
eigenfunction expansion method, useful for predicting the motion of the pollutant, both
in a homogeneous or heterogeneous environment, accounting for accurate simulations
(Chen & Liang, 2017, Babiarz et al., 2017; Pariyar, S., & Kafle, J. 2022). Far from being
neglected is the task of constructing the underlying rigorous theory, whereupon the
proof regarding the existence, unicity, and stability aspects under Lipschitz conditions
enhances the overall modeling tool itself (Babiarz et al., 2017). Nonetheless, dealing
with real-world dispersion problems, especially involving irregular geometries coupled
with transient wind velocities, yields closed-form solutions. This, consequently,
demands effective numerical solutions. The Grunwald-LeTnikov numerical schemes,
developed by Ahmed & Haq, 2024, or the adaptive FE approach by Gao & Liu, 2023,
have developed themselves adequately as effective approaches in approximating the
FDEs under such complicated geometries. One unmistakable takeaway in such studies
is the extreme sensitivity presented by the pollutant distribution, owing to its controlling
parameter, the fractional order «, central to the underlying memory aspects Pariyar &
Kafle, 2023,2024. Not an entirely remote truth, as it may relate to direct “mathematical
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truths” surrounding such Fall-Apart Dynamics, is, rather, the profound weighting
applied by a, enabling the FADESs, under precise a-manipulation, per se, explaining
such long-term memory, persistence, or “reduced mixing” left entirely unaccounted
under presentations assuming integer orders. Moving forward along such forays, the
paper introduces an analytical-numerical tool support for “air pollution prediction.”
Hoping, adequately, under such direct analytical insights facilitated by the underlying
adjustable numerical tools, such underlying critical work is intended, rather, as it were,
its underlying requisites, to offer direct practical understanding, rather, into “air quality
analysis, mitigation, or forecasting.

Preliminaries of Fractional Calculus

Definition 1(Ahmed et al. 2024): The Riemann-Liouville fractional integral of order
a > 0 for a function m(y) is given by

1% m(y)= o f Y(y-z)"'m(z)dz, y>a,and

yLmy)=r= [ (2" m@) dz, a>y.

Definition 2 (Deng et al. 1993): Let Yi(z) be a given function and let u— 1 < ¢ < p with
u € N. The Riemann—Liouville fractional derivative of order ¢ is defined as

D)= () = s i fy v dn, 2>0,

where I'(+) denotes the gamma function and J '(n) represents the p-th order derivative
of Y.

Definition 3 (Gao. et al., 2023): For 0 < ¢ < 1, the Caputo fractional integral of a
function Yi(z) is

(2= Jy v dn, z>0.

Definition 4 (Pariyar et al. 2024): For a function J(z) and order [] satisfying u - 1 <1
< u, the Caputo fractional derivative is given by

DYy(z )—F(—(,,)f y® m)z)* ! dn,  p-1<¢<p, and for

b=, DRu(2)=-Sy(z)
o DYV(@)= v(2).
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Definition S (Pariyar et al. 2023): The single-parameter Mittag—Leffler function E _(x),
where ( is a complex parameter, is defined by

k

~ X
Ea(x>=; -

Analytical Solution of Fractional Advection Diffusion Equation
We consider 1 D, FADE to describe pollutant transport along a spatial domain O
< x < L, with t > 0 and fractional order O <o 1 [9]:

0%C(xt) D 0%2C(x,t) u aC(x,1)
ate Ax2 ax

where C(x,t) represents the concentration of the pollutant, D is the molecular
diffusion coefficient, and u isthe advective velocity. The problemis supplemented
by the initial and homogeneous Dirichlet boundary conditions:

C(x, 0) =1 (x),
C@,t)=0,CL,t)=0.

Since the boundary conditions vanish at x = 0 and x = L, it is natural to represent the
solution as a sine-series expansion:

nmx

Cx.b)= i X, (x) To(t), X, (x)=sin (T) .
n=1

Substituting into (8) and applying the orthogonality property of sine functions leads to
the fractional-order ordinary differential equation:

o 2
%Z-MTH(O, r,=D (nL—“) .Using the Laplace transform for fractional derivatives,

the solution of this equation is obtained as:

Tn(t) :AnEa ('x‘nt a)

where E (-) is the Mittag—Leffler function, which generalizes the exponential decay for
fractional systems.
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The coefficients A,, are determined from the initial condition C(x, 0) = f

(): Ay== f, f(x) sin (*=) dx  An =  [“f(x) sin (?) dx

can be written as:
C(x,t)= i E j f(&) sin < é) dci] sin (HEX) E, [—D (ri_n)z t“]
n=1

This formulation expresses the pollutant concentration as a superposition of spatial
modes, each decaying in time according to the Mittag—Leffler function, which naturally
captures the memory effects inherent in fractional-order models. The method provides a
compact, closed-form representation that is particularly suited for problems with simple
geometries and homogeneous boundary conditions.

Existence and Uniqueness of the Solution

Existence
nmx

To demonstrate that the eigen functionssin (T

under homogeneous Dirichlet boundary conditions, consider the integral. For m#n

) form a complete orthonormal basis

L

(n m)rrx

sin ((nﬂ;)nx)

(n+m)mx

Lm=J, sm( )s1 mnx d = [sm

(n m)rrx

Both terms vanish because sin (nm)=0 for integ 'r n,thus I, ,,=0.

. —1JL[1 <2nnx>]d L
nn=73 O -cos {— x=2

Hence, the function s1n( L ) are orthogonal. Normalizing them by \/2 ensures

On(x) = \E sin ()

Thus, {d.(x) }forms an orthonormal basis in L* (0, L), allowing any function

f(x) € L* (0, L) to be expanded as:

For n=m, we have:

their L*-norm equals 1:



ISSN No. (Print) 2705-4586

Baneshwor Campus
ISSN No. (Online) 2990-7772

182  JOURNAL OF ACADEMIA  VOLUME: 4 DECEMBER 2025

iy
0= )| [ t0b, 005,00
n=1

Let f(x) = C(x,0) be the initial condition. The time-dependent coefficients
satisfy: A,(t)=A,(0) E,(-A,t%),
where E,(-) is the Mittag-Leffler function and A,are the eigenvalues. Since

E,(z) is bounded, the series

C0= ) Ay (OF (At 0,()
n=1

converges uniformly. This ensures that C(x,t) is continuous in t and belongs to
L?(0,L), proving the existence of the solution.

Uniqueness

Let C;(x,t)and C,(x,t) be two solutions of the same problem. Define

u(x,t)=C;(x,t)-C,(x,t). Then u(x,t)satisfies:

o o*C oC . .
;ﬁ:’t) =D 8;(’0 -u (::’t), with homogeneous initial and boundary

conditions:
u(x,0)=0, u(0,t) =u(L,t)=0.
Since u(x,0)=0 and the problem is linear, it follows that u(x,t) = O for all x and t.

Thus, C, (x,t) = C, (x,1), establishing uniqueness.

1.1.3 Continuous Dependence on Initial Conditions
The solution’s dependence on the initial condition f(x) is characterized by the coefficients
A (0), computed as:

L

An(0)=% jo £ (x) sin (HLE) dx

These coefficients determine the solution C(x,t). Since the Mittag—Leffler functionE_(-z)
is bounded, small changes in f(x) result in minor changes in A (0) and consequently
in C(x,t). We conclude that the problem is well-posed since we have established that
the solution C(x,t) depends continuously on the initial condition f(x). Given such a
guarantee about the theoretical legitimacy and physical sense of an analytical solution,
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one naturally turns to the aspect of practical computation in finding approximate
solutions and devising numerical schemes applicable for those real-world conditions
for which closed-form results are unavailable.

Example
Consider the 1D time-fractional advection-diffusion equation defined over the spatial
interval 0<x<1 and for time t>0;

o“C__&'C  aC

Py :Dﬁ —ua—X, 0<o<l,

where the C(x,t) is the constant advection velocity, D is the diffusion coefficient,
C(x,t) is the pollutant concentration afractional derivative is taken in Caputo sense.
We consider this problem with homogeneous Dirichlet boundary conditions: C(0,t)=0,
C(1,t)=0, vt=0,

We consider this problem with homogeneous Dirichlet boundary conditions:
C(x,0)=sin(nx), 0<x<1.

This solution can be represented, via the previously discussed method of eigenfunction
expansion, in terms of a Fourier sine series with Mittag-Leffler functions in time:

Clx.0)= Z A, sin (n7x) By (-D(nm)t?),
n=1

where the coefficients A_are computed from the initial condition. In this particular case,
due to the simple initial function, only the first mode is nonzero with A =1, yielding the
exact closed-form solution:

C(x,t)=sin(nx) E_(-Dm*t*).

Consider hydrogen gas as the pollutant with a diffusivity of about 0.00036m?/hr at
20°C. in order to show some practical implications of the model. We will evaluate the
concentration, taking x=0.4 meters and time t=0.4 hours from the source, assuming
a=0.8 for capturing the subdiffusive behavior and with a constant wind velocity.
Upon numerical evaluation of the above parameters, the pollutant concentration is
approximately 0.95314.

The diffusivity parameter D measures the rate at which contaminants disperse across
the atmosphere. While the number given is in fact common for a large number of
gaseous contaminants, it is important to recognize that realistic diffusivity actually may
vary considerably with the pollutant’s chemical composition, temperature, humidity,
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wind conditions, and topography. Fractions introduce the anomalous transport effects
commonly encountered in complex air systems and thus offer a more realistic approach
to modeling pollutant dispersion.A at x = 0.2m B atx=0.5m

Pollutant Concentration at x = 0.2 m Pollutant Concentration at x = 0.5 m
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Figure 1: Pollutant concentration over time at location x = 0.2, 0.5, 0.8 m with varying
fractional orders o = 0.4, 0.6, 0.8, 1.0.

Our results visually demonstrate how fractional order (o) governs pollutant behavior.

The concentration versus time for x = 0.2 meters from the source is also shown in Figure
A. By comparing the curves for o =0.4, 0.6, 0.8, and 1.0, one can notice that the memory
effects are higher and the fall in concentration is slower for smaller o.. For example, o
=1 is the case of classical diffusion, and the pollutant gets removed significantly much
faster than for a = 0.4, where it remains for a longer period due to fractional dynamics.

This trend continues further away. Plotting the solution 0.5 meters away from the source,
Figure B shows generally lower concentrations due to dispersion, but it still clearly
displays the large effect of o.. Again, delayed decay correlates with smaller values of o
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indicating that anomalous transport can extend the presence of the pollutant even at half
way through the domain.

Figure C 0.8 m, close to boundary, shows this effect is consistent in that even as advection
and spreading continue to lower concentrations, lower values of a still tend to slow the
decline, showing fractional memory affects transport throughout the entire system.

Figure D combines these observations in a single plot by comparing all locations and
all a values. Two relations become immediately evident from the combined view:
concentration decreases from the source, and importantly it does so more smoothly as o
moves further below 1. This visualization highlights the critical advantage of fractional
models: their flexibility in capturing spatially variable persistence.

Key Finding: Fractional derivatives fundamentally alter predicted dispersion.
In particular, oo < 1 introduces memory effects in the model that slow the decay of
concentration and therefore prolong the persistence of pollutants at all distances. This
result confirms that fractional advection-diffusion equations offer a more realistic and
flexible description of anomalous environmental transport than their classical integer-
order counterparts.

Conclusion

The method of eigenfunction expansions combined with Mittag-Leffler functions allows
us to solve exactly the one-dimensional time-fractional advection-diffusion problem. A
unique solution exists and is stable under certain conditions of the problem parameters.
The main result indicates that fractional order memory effects (o < 1) provide longer
residence times and slower degradation rates for pollutants than traditional models predict.
The derived result agrees with the anomalous diffusion observed in real environmental
systems. Physical accuracy is improved by the validation of the model using hydrogen
diffusion parameters. Further research should be directed at the extension of this
method to multi-dimensional problems and to problems with space-varying parameters,
as well as the determination of practical model parameters. The fractional approach
provides a superior mathematical framework, enabling better prediction and control of
environmental contamination.
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