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Abstract
Traditional models are often not able to capture the (spatial) persistence phenomenon 
found in  air transport so that it is still a challenge predicting the spread of large-
scale contamination. In this paper, these long-term effects are accounted for in  a one-
dimensional time-fractional advection-diffusion equation (Caputo definition) based 
model. Uniform and non-uniform  Dirichlet boundary conditions are applied to test 
the model. The Eigen function expansion is employed to obtain an analytic solution 
as it balances mathematical utility and physical  understanding. More importantly, 
it is rigorously shown that the solution is well-posed by utilizing the necessary basic 
assumptions on the Lipschitz condition with regard to its proofs for the existence, 
uniqueness, and continuous dependence on the initial input values for the solution. 
This shows how the fractional calculus could be more precise with regard to the 
characteristics related to the dispersion of the pollutant in the real world than being 
confined to the completion of an equation for this task.

Keywords: Grunwald-Letnikov, eigenfunction, fractional time derivatives, numerical 
simulations, advection-diffusion equation
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Introduction
The transport of pollutants between air and water and soil relies on principles of 
heat transfer and mass transfer. Precise modeling of contaminant transport processes 
in environmental protection and sustainability are crucial (Baumbach, 2012). The 
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atmosphere itself is a source of secondary pollutants due to chemical reactions taking place 
with direct emissions from traffic and industrial activities and fossil fuel burning. There 
is established evidence that it poses a threat to human health and natural environments 
(Kinney, 2018). Indeed, the main limitation in modeling exists with varied environments 
because pollutants distribute themselves by following non-Fickian or “anomalous” 
diffusion patterns. The inability to model complicated transport behavior by integer-
order advection-diffusion equations leads to a big gap between theoretical prediction 
and real patterns in the environment (Ndlovu, 2024; Neuman & Tartakovsky, 2009).

The fractional calculus provides the solution to this representation gap. That is, the 
fractional derivatives, which consist of characteristics of memory-based and long-range 
dependency, have been suitable in modeling the anomalous transport phenomena arising 
in nature (Metzler & Klafter, 2000; David et al., 2011). Then, the framework of fractional 
calculus seems effective in modeling such intricate diffusion patterns in atmospheric and 
hydrological systems (Tsai & Chen, 2004). One-dimensional time-fractional advection-
diffusion equation with variable diffusivity is effective in modeling pollutant dispersion 
since it handles the complexity of the patterns existing in environmental data (Poudel et 
al. 2023; Pariyar et al. 2025; Pariyar, S., & Kafle, J. 2024). Solution techniques for the 
FADE are critical here, as they offer a direct source of robust theoretical understanding, 
but more importantly, a sound benchmark for simulations. With the imposition of 
Dirichlet boundary conditions, there are several solution techniques such as the 
eigenfunction expansion method, useful for predicting the motion of the pollutant, both 
in a homogeneous or heterogeneous environment, accounting for accurate simulations 
(Chen & Liang, 2017, Babiarz et al., 2017; Pariyar, S., & Kafle, J. 2022). Far from being 
neglected is the task of constructing the underlying rigorous theory, whereupon the 
proof regarding the existence, unicity, and stability aspects under Lipschitz conditions 
enhances the overall modeling tool itself (Babiarz et al., 2017). Nonetheless, dealing 
with real-world dispersion problems, especially involving irregular geometries coupled 
with transient wind velocities, yields closed-form solutions. This, consequently, 
demands effective numerical solutions. The Grünwald-LeTnikov numerical schemes, 
developed by Ahmed & Haq, 2024, or the adaptive FE approach by Gao & Liu, 2023, 
have developed themselves adequately as effective approaches in approximating the 
FDEs under such complicated geometries. One unmistakable takeaway in such studies 
is the extreme sensitivity presented by the pollutant distribution, owing to its controlling 
parameter, the fractional order α, central to the underlying memory aspects Pariyar & 
Kafle, 2023,2024. Not an entirely remote truth, as it may relate to direct “mathematical 
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truths” surrounding such Fall-Apart Dynamics, is, rather, the profound weighting 
applied by α, enabling the FADEs, under precise α-manipulation, per se, explaining 
such long-term memory, persistence, or “reduced mixing” left entirely unaccounted 
under presentations assuming integer orders. Moving forward along such forays, the 
paper introduces an analytical-numerical tool support for “air pollution prediction.” 
Hoping, adequately, under such direct analytical insights facilitated by the underlying 
adjustable numerical tools, such underlying critical work is intended, rather, as it were, 
its underlying requisites, to offer direct practical understanding, rather, into “air quality 
analysis, mitigation, or forecasting.

Preliminaries of Fractional Calculus

Definition 1(Ahmed et al. 2024):  The Riemann–Liouville fractional integral of order 
α > 0 for a function m(y) is given by
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  α   ay y-  α- m    d , a   y  

Definition 2 (Deng et al. 1993): Let ψ    be a given function and let µ− 1 < ϕ < 

µ with µ ∈ N. The Riemann–Liouville fractional derivative of order ϕ is defined 

as 

RLDϕψ    d 

d     -ϕψ      
   -ϕ 

d 

d   ψ 
      -   -ϕ-  d ,     ,     

  

where   ·  denotes the gamma function and (µ)    represents the µ-th order 

derivative of ψ  

Definition 2 (Deng et al. 1993): Let ψ(z) be a given function and let µ− 1 < ϕ < µ with 
µ ∈ N. The Riemann–Liouville fractional derivative of order ϕ is defined as
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function Eα(x), where  is a complex parameter, is defined by 
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Analytical Solution of Fractional Advection Diffusion Equation 

We consider 1 D ,  FADE to describe pollutant transport along a spatial domain 

0 < x < L, with t > 0 and fractional order 0 <  1 [9]: 

 
        
             

            
  , 

where C(x,t) represents the concentration of the pollutant, D is the molecular 
diffusion coefficient, and u is the advective velocity. The problem is 
supplemented by the initial and homogeneous Dirichlet boundary 
conditions: 

C(x, 0) = f (x),  

C(0, t) = 0, C(L, t) = 0.  

Since the boundary conditions vanish at x = 0 and x = L, it is natural to 

represent the solution as a sine-series expansion: 

Definition 4 (Pariyar et al. 2024):  For a function (z) and order ∏ satisfying µ − 1 < ∏ 
< µ, the Caputo fractional  derivative is given by
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Definition 5 (Pariyar et al. 2023): The single-parameter Mittag–Leffler function Eα(x), 
where 〈 is a complex parameter, is defined by
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     n t ,      n    sin  

n  
    

Substituting into (8) and applying the orthogonality property of sine functions 

leads to the fractional-order ordinary differential equation: 

dα n t 
dtα

 - n n t ,  n D  
n 
 
 
 
  Using the Laplace transform for fractional 

derivatives, the solution of this equation is obtained as: 

 n t   AnEα   nt α  
where Eα(·) is the Mittag–Leffler function, which generalizes the exponential 

decay for fractional systems. 

Substituting into (8) and applying the orthogonality property of sine functions leads to 
the fractional-order ordinary differential equation:
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The coefficients An are determined from the initial condition C(x, 0) = f 

(x): An =  
  f    sin  n  

 
  d      

                           
  

can be written as: 

   ,t       f
 

 
   sin  n    d  sin  n    Eα   D  n   

 
tα 

 

n  

 

This formulation expresses the pollutant concentration as a superposition 

of spatial modes, each decaying in time according to the Mittag–Leffler 

function, which naturally captures the memory effects inherent in fractional-

order models. The method provides a compact, closed-form representation 

that is particularly suited for problems with simple geometries and 

homogeneous boundary conditions. 

 

Existence and Uniqueness of the Solution 

Existence 

To demonstrate that the eigen functionssin  n  
 
 form a complete 

orthonormal basis under homogeneous Dirichlet boundary conditions, 

consider the integral. For m n 

 n,m  sin  n  
 
  

 sin  m  
 
 d  =  

 
    

sin   n-m   
  

 n-m   
 

  
 

 

-  sin  
 n m   

  
 n m   

 

 
 

 

  

Both terms vanish because sin  n     for integer n,thus  n,m    

For  n = m, we have: 

 n,n 
 
     cos   n     

 

 
d  

 
  

This formulation expresses the pollutant concentration as a superposition of spatial 
modes, each decaying in time according to the Mittag–Leffler function, which naturally 
captures the memory effects inherent in fractional-order models. The method provides a 
compact, closed-form representation that is particularly suited for problems with simple 
geometries and homogeneous boundary conditions.
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Hence, the function sin  n  
 
  are orthogonal. Normalizing them by   

 
  ensures 

their L2-norm equals 1:                         

ϕn(x) =   
 
  sin  n  

 
  

Thus, {ϕn(x) }forms an orthonormal basis in L2 (0, L), allowing any function 

f(x) ∈ L2 (0, L) to be expanded as: 

f       f
 

 
   ϕn    d  

 

n  

ϕn     

Let f(x) = C(x,0) be the initial condition. The time-dependent coefficients 

satisfy: An t  An    Eα - ntα , 

where Eα    is the Mittag-Leffler function and  nare the eigenvalues.   Since 

Eα    is bounded, the series 

   ,t   An

 

n  

   Eα   nt α  ϕn    

converges uniformly. This ensures that C(x,t) is continuous in t and belongs to 

    ,  , proving the existence of the solution. 

 

Uniqueness  

Let     ,t  and      ,t  be two solutions of the same problem. Define 

 u  ,t      ,t -    ,t). Then u  ,t satisfies: 

 αu  ,t 
 tα

 = D      ,t 
   

-u     ,t 
  

,  with homogeneous initial and boundary 

conditions: 

u  ,    , u  ,t  u  ,t     
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Hence, the function sin  n  
 
  are orthogonal. Normalizing them by   

 
  ensures 

their L2-norm equals 1:                         

ϕn(x) =   
 
  sin  n  

 
  

Thus, {ϕn(x) }forms an orthonormal basis in L2 (0, L), allowing any function 

f(x) ∈ L2 (0, L) to be expanded as: 

f       f
 

 
   ϕn    d  

 

n  

ϕn     

Let f(x) = C(x,0) be the initial condition. The time-dependent coefficients 
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where Eα    is the Mittag-Leffler function and  nare the eigenvalues.   Since 
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   ,t   An

 

n  

   Eα   nt α  ϕn    

converges uniformly. This ensures that C(x,t) is continuous in t and belongs to 

    ,  , proving the existence of the solution. 

 

Uniqueness  

Let     ,t  and      ,t  be two solutions of the same problem. Define 

 u  ,t      ,t -    ,t). Then u  ,t satisfies: 

 αu  ,t 
 tα

 = D      ,t 
   

-u     ,t 
  

,  with homogeneous initial and boundary 

conditions: 

u  ,    , u  ,t  u  ,t     u(x,0) = 0,   u(0,t) = u(L,t) = 0.   

Since u(x,0)=0  and the problem is linear, it follows that u(x,t) = 0 for all x and t.   

Thus, C1 (x,t) = C2 (x,t), establishing uniqueness.

1.1.3 Continuous Dependence on Initial Conditions
The solution’s dependence on the initial condition f(x) is characterized by the coefficients 
An(0), computed as:  
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Since u  ,     and the problem is linear, it follows that u  ,t    for all   and t    

Thus,     ,t      ,t , establishing uniqueness. 

 

1.1.3 Continuous Dependence on Initial Conditions 

 he solution’s dependence on the initial condition f    is characterized by the 

coefficients An   , computed as:   

An    
 
  f

 

 
   sin  n    d  

These coefficients determine the solution    ,t . Since the Mittag–Leffler 

functionEα -  is bounded, small changes inf   result in minor changes in An    

and consequently in    ,t   We conclude that the problem is well-posed since 

we have established that the solution C(x,t) depends continuously on the initial 

condition f(x). Given such a guarantee about the theoretical legitimacy and 

physical sense of an analytical solution, one naturally turns to the aspect of 

practical computation in finding approximate solutions and devising numerical 

schemes applicable for those real-world conditions for which closed-form 

results are unavailable. 

 

Example 

Consider the 1D time-fractional advection-diffusion equation defined over the 

spatial interval       and for time t     ;  

 α 
 tα   D

   
      u

  
  ,   α  , 

where the    ,t  is the constant advection velocity,  D  is the diffusion 

coefficient, C(x,t) is the pollutant concentration afractional derivative is taken in 

These coefficients determine the solution C(x,t). Since the Mittag–Leffler function Eα(-z) 
is bounded, small changes in f(x) result in minor changes in An(0) and consequently 
in  C(x,t). We conclude that the problem is well-posed since we have established that 
the solution C(x,t) depends continuously on the initial condition f(x). Given such a 
guarantee about the theoretical legitimacy and physical sense of an analytical solution, 
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one naturally turns to the aspect of practical computation in finding approximate 
solutions and devising numerical schemes applicable for those real-world conditions 
for which closed-form results are unavailable.

Example
Consider the 1D time-fractional advection-diffusion equation defined over the spatial 
interval 0≤x≤1 and for time t≥0;	
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Since u  ,     and the problem is linear, it follows that u  ,t    for all   and t    

Thus,     ,t      ,t , establishing uniqueness. 

 

1.1.3 Continuous Dependence on Initial Conditions 

 he solution’s dependence on the initial condition f    is characterized by the 

coefficients An   , computed as:   

An    
 
  f

 

 
   sin  n    d  

These coefficients determine the solution    ,t . Since the Mittag–Leffler 

functionEα -  is bounded, small changes inf   result in minor changes in An    

and consequently in    ,t   We conclude that the problem is well-posed since 

we have established that the solution C(x,t) depends continuously on the initial 

condition f(x). Given such a guarantee about the theoretical legitimacy and 

physical sense of an analytical solution, one naturally turns to the aspect of 

practical computation in finding approximate solutions and devising numerical 

schemes applicable for those real-world conditions for which closed-form 

results are unavailable. 

 

Example 

Consider the 1D time-fractional advection-diffusion equation defined over the 

spatial interval       and for time t     ;  

 α 
 tα   D

   
      u

  
  ,   α  , 

where the    ,t  is the constant advection velocity,  D  is the diffusion 

coefficient, C(x,t) is the pollutant concentration afractional derivative is taken in 
where the C(x,t) is the constant advection velocity, D is the diffusion coefficient, 
C(x,t) is the pollutant concentration afractional derivative is taken in Caputo sense. 
We consider this problem with homogeneous Dirichlet boundary conditions: C(0,t)=0, 
C(1,t)=0, ∀t≥0,

We consider this problem with homogeneous Dirichlet boundary conditions:

C(x,0)=sin(πx), 0≤x≤1.

This solution can be represented, via the previously discussed method of eigenfunction 
expansion, in terms of a Fourier sine series with Mittag-Leffler functions in time:
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Caputo sense. We consider this problem with homogeneous Dirichlet boundary 

conditions:    ,t   ,    ,t   ,  t  , 

We consider this problem with homogeneous Dirichlet boundary conditions: 

   ,   sin     ,        

This solution can be represented, via the previously discussed method of 

eigenfunction expansion, in terms of a Fourier sine series with Mittag-Leffler 

functions in time: 

   ,t   An

 

n  

sin  n    Eα  D n   tα , 

where the coefficients Anare computed from the initial condition. In this 

particular case, due to the simple initial function, only the first mode is nonzero 

with A   , yielding the exact closed-form solution:  

   ,t  sin      Eα -D  tα .  

Consider hydrogen gas as the pollutant with a diffusivity of about        m  hr 

at     .  in order to show some practical implications of the model. We will 

evaluate the concentration, taking x=0.4 meters and time t=0.4 hours from the 

source, assuming α        for capturing the subdiffusive behavior and with a 

constant wind velocity. Upon numerical evaluation of  the above parameters, 

the pollutant concentration is approximately 0.9531   

The diffusivity parameter D measures the rate at which contaminants disperse 

across the atmosphere. While the number given is in fact common for a large 

number of gaseous contaminants, it is important to recognize that realistic 

diffusivity actually may vary considerably with the pollutant's chemical 

composition, temperature, humidity, wind conditions, and topography. Fractions 

introduce the anomalous transport effects commonly encountered in complex air 

where the coefficients An are computed from the initial condition. In this particular case, 
due to the simple initial function, only the first mode is nonzero with A1=1, yielding the 
exact closed-form solution: 

C(x,t)=sin(πx)  Eα(-Dπ
2tα).

Consider hydrogen gas as the pollutant with a diffusivity of about 0.00036m2/hr at 
20oC.  in order to show some practical implications of the model. We will evaluate the 
concentration, taking x=0.4 meters and time t=0.4 hours from the source, assuming 
α=0.8 for capturing the subdiffusive behavior and with a constant wind velocity. 
Upon numerical evaluation of  the above parameters, the pollutant concentration is 
approximately 0.95314.

The diffusivity parameter D measures the rate at which contaminants disperse across 
the atmosphere. While the number given is in fact common for a large number of 
gaseous contaminants, it is important to recognize that realistic diffusivity actually may 
vary considerably with the pollutant’s chemical composition, temperature, humidity, 
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wind conditions, and topography. Fractions introduce the anomalous transport effects 
commonly encountered in complex air systems and thus offer a more realistic approach 
to modeling pollutant dispersion.A at x = 0.2m	 B at x = 0.5m

C at x = 0.8m	 D at various α and locations

Figure 1: Pollutant concentration over time at location x = 0.2, 0.5, 0.8 m with varying 
fractional orders α = 0.4, 0.6, 0.8, 1.0.

Our results visually demonstrate how fractional order (α) governs pollutant behavior. 

The concentration versus time for x = 0.2 meters from the source is also shown in Figure 
A. By comparing the curves for  α = 0.4, 0.6, 0.8, and 1.0, one can notice that the memory 
effects are higher and the fall in concentration is slower for smaller α. For example, α 
= 1 is the case of classical diffusion, and the pollutant gets removed significantly much 
faster than for α = 0.4, where it remains for a longer period due to fractional dynamics.

This trend continues further away. Plotting the solution 0.5 meters away from the source, 
Figure B shows generally lower concentrations due to dispersion, but it still clearly 
displays the large effect of α. Again, delayed decay correlates with smaller values of α 
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indicating that anomalous transport can extend the presence of the pollutant even at half 
way through the domain.

Figure C 0.8 m, close to boundary, shows this effect is consistent in that even as advection 
and spreading continue to lower concentrations, lower values of α still tend to slow the 
decline, showing fractional memory affects transport throughout the entire system.

Figure D combines these observations in a single plot by comparing all locations and 
all α values. Two relations become immediately evident from the combined view: 
concentration decreases from the source, and importantly it does so more smoothly as α 
moves further below 1. This visualization highlights the critical advantage of fractional 
models: their flexibility in capturing spatially variable persistence.

Key Finding: Fractional derivatives fundamentally alter predicted dispersion. 
In particular, α < 1 introduces memory effects in the model that slow the decay of 
concentration and therefore prolong the persistence of pollutants at all distances. This 
result confirms that fractional advection-diffusion equations offer a more realistic and 
flexible description of anomalous environmental transport than their classical integer-
order counterparts.

Conclusion
The method of eigenfunction expansions combined with Mittag-Leffler functions allows 
us to solve exactly the one-dimensional time-fractional advection-diffusion problem. A 
unique solution exists and is stable under certain conditions of the problem parameters. 
The main result indicates that fractional order memory effects (α < 1) provide longer 
residence times and slower degradation rates for pollutants than traditional models predict. 
The derived result agrees with the anomalous diffusion observed in real environmental 
systems. Physical accuracy is improved by the validation of the model using hydrogen 
diffusion parameters. Further research should be directed at the extension of this 
method to multi-dimensional problems and to problems with space-varying parameters, 
as well as the determination of practical model parameters. The fractional approach 
provides a superior mathematical framework, enabling better prediction and control of 
environmental contamination.
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