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Abstract

This study takes a Bayesian approach to estimating and analyzing the parameters of the
Inverse Exponentiated Exponential Poisson distribution (IEEP), using Markov Chain
Monte Carlo (MCMC) sampling. To make sure the MCMC chains are mixing well, we
used convergence diagnostics like the Gelman-Rubin diagnostic and trace plots. These
checks confirm that our posterior estimates for both the rate and shape parameters
are reliable and well-behaved, showing clear unimodal distributions and credible
intervals that give us a probabilistic range of the estimates. We also performed residual
analysis along with normality tests like Shapiro-Wilk and Anderson-Darling, which
showed the residuals follow a normal distribution. So our model’s assumptions hold up.
Besides, posterior predictive checks and various models fit techniques demonstrated
that the Bayesian model captures the underlying data distribution effectively. Overall,
these results emphasize the robustness of Bayesian inference when modeling the IEEP
distribution, supporting its usefulness and validity for both statistical analysis and real-
world data applications.

Keywords: Bayesian inference, exponential poisson distribution, Gelman-Rubin
diagnostic, posterior predictive checks, residual analysis.

Introduction

Statistical modeling plays a key role when it comes to understanding complex data and
making trustworthy conclusions. One particular probability model that’s been getting
more attention lately is the Exponential-Exponentiated Power Inverse (EEPI) distribution.
It’s loved for its flexibility and reliability, especially when working with lifetime data,
validity studies, or real-world situations. Traditional methods like Maximum Likelihood



ISSN No. (Print) 2705-4586

Baneshwor Campus
ISSN No. (Online) 2990-7772

68 JOURNAL OF ACADEMIA  VOLUME: 4 DECEMBER 2025

Estimation (MLE) can sometimes run into issues, especially if you’re dealing with small
sample sizes or don’t have much prior information. That’s where Bayesian inference
comes in-it’s a powerful alternative because it combines what we already believe (prior
knowledge) with what the data shows (observed information) to give us better estimates.
Now, Bayesian methods rely on something called the posterior distribution. Think of it
as the result of merging your initial beliefs with new data, following Bayes’ theorem.
This approach helps us get more stable parameter estimates and is especially handy
when dealing with complex models that are tough to solve analytically. Since deriving
exact solutions for these posterior distributions can be tricky or sometimes impossible,
we often turn to Markov Chain Monte Carlo (MCMC) techniques. Methods like Gibbs
sampling and the Metropolis-Hastings algorithm allow us to efficiently approximate
these distributions, leading to more accurate inferences.

Literature Review

There are various approaches to estimate parameters of distribution with a common
approach as Bayesian inference. It is very useful if there is more uncertainty. One of
the traditional, classical approach is the frequentist approach, but Bayesian methods
incorporate what we already know called prior knowledge updating our estimates as
new data comes in. Bayesian approach has been widely used across different fields like
survival analysis, reliability testing as well as financial risk assessment (Gelman et al.,
2013). Some of the important fields of Bayesian approaches are as follows:

Bayesian Methods for Statistical Inference

Bayesian methods are regularly changing and being used in various field of statistical
models. The theoretical foundation of the Bayesian Method was laid out by Box and Tiao
(1973) describing how Bayesian analysis can effectively be used for uncertainty about
parameters. Then Gelman and colleagues (2013) elaborated its application and uses in
hierarchical models developing computational methods such as Markov Chain Monte
Carlo (MCMC). Gibbs sampling by Geman & Geman (1984) including the Metropolis-
Hastings algorithm by Metropolis et al. (1953) has made supportive for working with
complex probability distributions using Bayesian methods.

Bayesian Methods for Probability Distributions

Bayesian approach has been used by peoples in different types of probability models
to estimate the parameters. Watanabe (2010) and Murphy (2012) explained the use of
Bayesian methods for estimating parameters of probability distribution and claimed
that it is more effective than other methods like maximum Likelihood methods (MLE)
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when some prior information about parameters are known and the sample size are
small. Al-Awadhi et al. (2020) explained that Bayesian models provide a better option
for estimating parameters of reliability and lifetime distributions which will be more
accurate predictions compared other traditional and classical methods.

Bayesian Analysis for Model Validation and Residuals

Bayesian model can be verry effectively used for checking the accuracy of model fit and
understanding the residuals. Vehtari et al. (2017) worked on posterior predictive checks
as well as diagnostic measure such as Gelman-Rubin diagnostic (Gelman & Rubin,
1992) to make it possible for MCMC algorithms whether it converge properly or not.
They also focused on Residual analysis and normality tests, such as the Shapiro-Wilk
and Anderson-Darling tests.

Spiegelhalter et al. (2002) also focused saying that thorough residual diagnostics can be
greatly improved making interpretations of models more reliable for decision-making.
Bayesian methods have been successfully used on various probability distributions for
estimating the parameters, one of area of its use is to estimate parameters for the Inverse
Exponentiated Exponential Poisson (IEEP) distribution. This study mainly focusses to
fill that gap created under classical providing explanation of Bayesian estimation of
IEEP models. This study also focusses on MCMC methods. Mainly, this study aims
to estimate the shape and rate parameters including check for reliability of the results
obtained by ensuring the MCMC. Also, normality tests and residual analysis will be
used to verify that model assumptions holds or not.

Objective of the Study

This study adds to the literature on Bayesian method. Study basically analyzes IEEP
model using Bayesian method which has not been explored earlier. Study uses MCMC
techniques to estimate the parameters more precisely than the This other traditional
and classical methods. Study also demonstrates the reliability of the Bayesian estimates
with convergence diagnostic. Furthermore, the study, provides a framework that can be
extended to more complex probability model

Inverse Exponentiated Exponential Poisson (IEEP) Probability Distribution

The IEEP model used here is a flexible probability distribution that can be used for
generalizing several existing lifetime and reliability distributions. Introduced by Telee
& Kumar (2023), the IEEP distribution can be used in fields such as modeling, data
analysis, engineering, medical sciences, and financial risk modeling. Present studies
have concentrated on parameter estimation methods, with Bayesian techniques proving
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to be mainly effective in covering the distribution’s tail behavior as well as ensuring
robust predictions (Kumar & Singh, 2021). Here, we have tried to explore the Bayesian
estimation of IEEP parameters based on MCMC techniques, focusing the need for

further studies.
The Cumulative distribution function (CDF) and probability density function (PDF) of

the IEEP are,

1 ~plx\*
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The reliability function and the hazard rate functions are given by eq (2) and eq (3)
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To demonstrate the flexibility of the model, we have plotted the pdf and hazard rate
curves for various values of o false and B false taking A = 2 are displayed in figure 1.
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Figure 1: The PDFs (Left) and HRF(Right) at A =2
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The pdf curves confirms that the pdfs are unimodal and the hazard rate curves shows
that the hazard rate is inverted bathtub and increasing and decreasing in nature.

Data Set and Exploratory Data Analysis

In this section of the study, we have checked the practical applicability of the model
taking a real data set. The data set is an accelerated life test that includes 59 conductors
[Schafft et al. (1987); Nelson and Doganaksoy (1995)] where failure time is measured
in hours with no any censoring of the observations.

4.700, 6.545, 9.289,7.974, 8.799, 7.683,7.224, 7.543, 6.956, 8.687, 2.997, 8.591,6.129,
11.038, 5.381, 6.958, 4.288, 6.522, 4.137, 7.459, 7.495, 6.573, 6.538,5.589, 5.807,
7.945,6.869, 6.352,6.087, 6.725, 8.532, 9.663, 6.369, 7.024, 8.336,9.218, 6.948, 9.254,
5.009, 7.489, 7.398, 6.033, 10.092, 7.496, 7.365, 6.923, 6.492, 5.459, 8.120, 4.706,
5.640, 5.434, 6.476, 6.071, 10.491, 5.923 , 7.937, 6.515, 4.531.

Summary statistics of the dataset provides overall nature of the data. Summary Statistics
of the data is displayed in table 1. Also, summary statistics indicates that the data set is
non-normal and positively skewed.

Table 1
Summary Statistics of the Dataset
Minimum | 1st Qu Median Mean 34 Qu | Maximum | Skewness | Kurtosis
2.997 6.052 6.923 6.980 7.941 11.038 0.193 3.087

To demonstrate the nature of the data, Boxplot is displayed in figure 2(left).
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Figure 2: Boxplot (Left Panel) and Histogram and Density Plot (Right Panel)
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Maximum Likelihood Method of Estimation (MLE)

As for comparative study of Bayesian analysis, we have also estimated the parameter of
the IEEP using MLE method. The MLEs, standard error and 95% confidence Interval
(CI) for parameters obtained using R software (R core Team, 2024) as well as the quasi-
Newton-Raphson algorithm in R [Rizzo, 2000] for MLE are given in Table 2.

Table 2

MLE, Standard Error and 95 Percent C.1.
Parameters MLEs Standard Error 95% C.1.
alpha 40.58683 4.860 (31.068, 50.113)
beta 22.75533 2.049 (18.739, 26.771)
lambda 2.996829 1.251 (0.5450, 5.4490)

Furthermore, the histogram and fitted pdfs are displayed in figure (1) right to shows the
accuracy of the fitted mode graphically.

Bayesian Gamma Distribution Modeling of the IEEP Distribution

Model Overview and Prior Distribution

In this section of the study, we have modeled the data with a Gamma distribution using
Bayesian analysis. Although under complex version of the model must include an extra
parameter beta, but for simplicity, we have left beta just focusing on two parameters
defining gamma distribution: shape and rate parameters. Here, alpha is the shape and
lambda is the rate parameter. Gamma distribution is most commonly used under positive
continuous variable. Taking 5000 samples from independent MCMC chains, we have
analyzed posterior distributions for both the parameters. Following setting under Gamma
priors are used for both the parameters as

Shape(a) ~ dgamma (1, 0.01) and Rate(A) ~ dgamma (1, 0.01) where, model assumes
that the dataa x[i] follows gamma distribution with parameters alpha and lambda. That
is

x[1] ~ Gamma (a, A)
MCMC methods is used here for sampling the posterior distribution for a and A. This is
achieved through Just Gibbs Sampler (JAGS) software.

Bayesian Analysis
This section explains the Bayesian approach to estimate the parameter of IEEP
distribution using MCMC sampling methods. Three separate MCMC chains are taken
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for 5000 samples and we looked at the posterior distribution for both parameter alpha
and lambda. The iterations went from 2001 to 7000, with a thinning interval of 1.

Posterior Summary Statistics
Summary statistics of parameters under Bayesian estimation including mean, SD, 95%
credible interval and quantities are given in table 3.

Table 3
Summary Statistics Parameters

Parameters | Mean |2.5% |Q1(25%) |Q2(50%) |[Q3(75%) [97.5% |SD |95%C.I.

o 18.76 [12.97 | 16.54 18.61 2097 24.98 3.14 | (12.97,24.98)
A 2.69 1.85 |2.37 2.67 3.01 3.59 0.46 | (1.85,3.59)
Trace Plots

Trace plots for A and a are shown in figure 3. It is seen that trace plot looks well mixed
indicating that better settlement of the Markov chains. Since the fluctuations is mostly
random and shows that there is no any strong pattern so there is no sign of correlation
sticking around. This suggests that MCMC algorithm made a better job exploring the
posterior distribution for IEEP model

Trace of rate Density of rate
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Figure 3: Trace and posterior density plots.
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Posterior Density Estimates

Right hand side of the figure 3 displays the density estimates for parameters. This shows
how sure we are about estimate for level of certainty. Since both of these distributions
have single peak and smooth stating that the Bayesian inference give well defined and
clear parameter estimates. That is, it is seen that Bayesian inference confirms that the
IEEP model parameters are well-identified as well as the results explore good insights
into the data distribution. Also, credible intervals show a probabilistic range within which
the true parameter values lie which also reflect the inherent uncertainty in estimation.

Auto-correlation
High initial and decreasing gradually over increasing lags, indicates some level of chain
mixing but still with persistent correlations (figure 4).

rate shape

[F T e |
— —

Autocorelation
0
Autocorelaton
0

Figure 4: Auto-correlations Plots

Gelman-Rubin Diagnostic for Convergence

The Potential Scale Reduction Factor (PSRF) also named as Gelman-Rubin diagnostic,
assesses the convergence of MCMC chains for lambda and alpha are calculated. It is
seen that PSRF for lambda is 1.01 with Upper C.I. = 1.01. Similarly, for alpha, PSRF =
1.01 and Upper C.1. is1.02 Also, multivariate PSRF is 1.00. Since, both PSRF are close
to 1 which indicates that MC have mixed well and are sampling from larger posterior
distribution. Since upper C.I is very near to 1 which indicates no chain is significantly
different from others. It is also seen that joint distribution has reached equilibrium across
chains supporting convergence. All these evidence and results shows that analysis
convergence and the posterior estimates will be reliable for estimates.
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Posterior Predictive Distribution and Model Fit Assessment

Histogram in figure 5(left) shows a right skewed distribution which is expected for
Gamma-distributed variable. The modal value is around 7 values ranging from 4 to 7
approximately. Also, variability in the posterior predictive distribution indicates that the
model captures some uncertainty and the spread shows that the predicted values capture
a reasonable range aligning with the observed data.

Posterior Predictive Distribution Observed vs. Predicted Data
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E Predicted
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Figure 5: Posterior Predictive Distribution and Model Fit Assessment

Significant part colored with red of the data overlaps with predicted data indicated by
blue color forming purple reasons which indicates that general shape of data is very
well captured by the model. Also peak around 6-8 indicates model predicts central
values approximately. Approximate lower value of 3-5, the observed data has a slightly
higher density than predicted values. Furthermore, at higher value of 9-11, the predicted
distribution extends observed value which indicates that model is overestimating larger
values. The posterior P values is 0.559 which is around 0.5 indicated a better fit indicating
that model generated data is same to the observed data.

Residuals Analysis

Figure 6 is residual plots for checking goodness of fit. Histogram is mostly symmetric
around zero. This shows that model does not exhibits significant bias for its prediction.
Also range of residual approximating from -8 to 6 clustering around zero indicates that
model’s prediction is generally close to the observed values. It is seen that assumption
of normality reasonably met as the shape of the residual distribution is almost normal in
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shape. Also, it is seen, there is no clear sign of skewness or extreme outliers supporting
the adequacy of the model. The Q-Q plots also approximately verify the normality

Residuals Distribution Normal Q-Q Plot

15

10

Frequency

Sample Quantiles

residuals Theoretical Quantiles

Figure 6: Residual Plots (Left) and QQ Plots (Right)

Normality Test of Residuals
Shapiro-Wilk Test (W) of 0.99274 with p-value as 0.9789 indicates that we fail toreject the
null hypothesis suggesting that the residuals follow a normal distribution. Furthermore,

Anderson-Darling Test (A) with value 0.1508 and p value 0.9594 confirming that the
residuals do not significantly deviate from normality.

Findings Implications of the Study

Findings
The study’s key findings include of this study include

1. A successful Bayesian estimation of EEPI parameters for posterior means for A and
o which were 2.69 and 18.76, as well the 95% credible intervals for the parameters
which concluded strong evidence of estimation precision.

2. MCMC chains exhibited good convergence and Autocorrelation analysis showed
some persistence.

3. Study revealed a good model fit using posterior predictive checks.

4. Residual analysis validated model assumptions of normality.
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Implications of the Study

This study uses advancing Bayesian Methods for IEEP Distribution that had limited
attention and explains MCMC for getting reliable and valid posterior compared with
respect to traditional popular frequentist method. This study also highlights and
emphasizes the posterior predictive checks as well as the interactions of credible, residuals
and convergence diagnostics. Also, the Normality checks of residuals using the Shapiro-
Wilk and Anderson-Darling tests strengthens the assumption that the Bayesian model
is well-calibrated. Furthermore, this study elaborates improved parameter estimation
in Reliability and Lifetime Analysis. Also, this will help to get idea about application
of Modelling in Financial Risk Modeling as well as enhancing machine learning and
predictive analysis. Findings of the study also focus on how Bayesian method is useful
in Decision making Under Uncertainty.

Limitations of the Study

As study focuses on Bayesian analysis considering only two parameters lambda and
alpha. That a key limitation of the study is to applying Bayesian inference on only two
parameters alpha and lambda although the distribution IEEP has three parameters so,
future research can extend this model by incorporating 3 into the Bayesian framework
and examining its impact on parameter estimates and model fit. This study has significant
implication in both practical and theoretical fields of Bayesian inferences, statistical
modeling and decision making. Further refinement, applications on other models and
study for larger sample size is necessary for to get more precise results.

Future Research Directions

This study focuses mainly on application of Bayesian analysis on IEEP probability
model. It is clear that future study should apply the Bayesian IEEP model to real-world
data set in different fields, such as manicuring, health, finance as well as research. Also,
comparative analysis of IEEP with other published probability models are necessary.
Further study may be focused on study of sensitivity analysis on prior distributions.

Conclusion

This study mainly focusses on Bayesian inference to estimate the parameters lambda and
alpha of the Inverse exponentiated exponential (IEEP) distribution. Study demonstrates
the effectiveness of MCMC methods in handling complex probability distributions. The
study also analyzed and concluded that the Bayesian estimates were reliable & valid, as
evidenced by using convergence diagnostics, posterior predictive checks, and residual
analysis. Furthermore, the findings reinforce the applicability of Bayesian methods



ISSN No. (Print) 2705-4586

Baneshwor Campus
ISSN No. (Online) 2990-7772

78 JOURNAL OF ACADEMIA  VOLUME: 4 DECEMBER 2025

and its applications in statistical modeling, data analysis as well as in decision making,
particularly when handling uncertainty in parameter estimation.
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