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Highlights
• To study variation of spectral density with temperature for Q- Machine and Fusion reactor
• To study about the fundamental of plasma physics, its parameters and comparison of noise production
• At the level of continuum description, the calculation is based on the equation of hydrodynamics with given values of 

thermodynamic and transport coeffi  cient

Abstract 
This paper is mainly focused on studying time correlation and memory functions in order to determine the spectral density in 
plasma. The research aims to understand and quantify the noise produced in the plasma as a result of random processes. Noise 
can arise from various sources, including fl uctuations in particle density, temperature, and other plasma parameters. To ensure 
a fair comparison, the paper appears to keep the cross-sectional area of the plasma which is same for both the Q-Machine and 
Fusion Reactor. This means that any observed diff erences in spectral density can be attributed to the inherent characteristics of 
the two systems rather than diff erences in plasma volume. It is observed that Fusion Reactor produced more noise in comparison 
to the Q-Machine. This research seems to contribute to our understanding of plasma physics, specifi cally in the context of spectral 
density and noise production, by comparing two diff erent plasma systems. The observed diff erences in noise levels between the 
Q-Machine and Fusion Reactor could have important implications for plasma-based technologies and fusion research.
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Introduction
 Research on spectral density in plasma is a crucial aspect of plasma physics, with applications ranging from nuclear fusion 
to astrophysics and space science. However, like any scientifi c fi eld, there are often research gaps or areas where further 
investigation is needed. Here are a few potential research gaps in the study of spectral density in plasma such as non-linear eff ect, 
high temperature plasma, magnetic confi nement, instabilities and space plasma. Addressing these research gaps will contribute to 
a deeper understanding of spectral density in plasma and its implications for various scientifi c and technological applications. It 
will also help advance our knowledge of complex plasma phenomena and improve the performance of plasma-based technologies. 
Plasma, coined by William Crookes in 1879 as the fourth state of matter, is a unique statistical system comprising mobile charged 
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particles. When a gaseous medium's temperature surpasses a specifi c threshold, it undergoes a transformative shift from gas to 
plasma. In this transition, the thermal energy of its constituent particles rises to a point where the attraction between electrons 
and atomic nuclei diminishes. Consequently, instead of a heated gas composed of electrically neutral atoms, we fi nd a dynamic 
mix of two distinct groups of particles: electrons and ionized nuclei [1]. 

 Defying classifi cation as a solid, liquid, or gas, plasma distinguishes itself through its remarkable electrical conductivity. This 
conductivity is so potent that externally applied electric fi elds are eff ectively neutralized by the currents they induce within 
the plasma's core. Plasma physics draws upon the well-established principles of classical mechanics, electromagnetics, and 
non-relativistic statistical mechanics. At its core, plasma physics reach into the equilibrium and non-equilibrium characteristics 
of a statistical system encompassing numerous charged particles. The complexity of this system arises from the multitude of 
microscopic degrees of freedom resulting from the motion of individual particles [1, 2]. The state of ionized gas (plasma) 
can be specifi ed by distribution function. As a result, Kinetic theory is the most fundamental description of plasma state and 
serves as the foundation for the practical and useful fl uid approach [3]. Plasma physics involves a rich class of phenomena 
related to the dynamical processes in statistical mechanics. It is therefore essential to study structure and properties of the basic 
kinetic equation which govern the dynamical behavior of the plasma. The term "fl uid medium plasma" comes from Langmuir's 
suggestion that the electrons, ions, and neutral atoms in an ionized gas may be conceived of as corpuscular material entrained in 
some type of fl uid medium. 

 However, in contrast to blood, where a fl uid medium conveys the corpuscular material, an ionized gas's ions, electrons, and neutral 
atoms do not enter a fl uid medium [4]. The study of dynamical correlation in many-body systems addresses fundamental issues 
related to the spectral behavior of thermal fl uctuations in gases [5]. Time-dependent correlation functions are well-recognized for 
their utility in describing deviations from equilibrium in systems with numerous particles. In 1954, L. Van Hove introduced the 
theoretical framework for general space-time correlation functions [6]. This innovative approach involved the time-dependent 
extension of the familiar pair distribution function. It aimed to explain scattering theory based on Born's approximation and 
statistical mechanics. 

Subsequently, in 1958, R. Kubo's work on thermodynamic irreversible processes further advanced this fi eld by introducing 
response functions or relation functions. These functions were derived from Onsager's relations and provided a means to express 
kinetic coeffi  cients of thermal disturbances without relying on traditional methods of establishing transport equations [7]. These 
functions are commonly referred to as correlation functions, playing a role to that of partition functions. In the latter half of 
the 1950s, a novel approach to transport processes emerged as a highly active and productive avenue within non-equilibrium 
statistical mechanics. They indicated that the phenomenological coeffi  cients, which are explaining diff erent transport phenomena 
and time-dependent process as well [8].

Theoretical aspects 
The theoretical problem of studying time correlation function is basically that of describing the dynamical properties of many 
body systems. At the level of continuum description, the calculation is based on the equation of hydrodynamics with given values 
of thermodynamic and transport coeffi  cient. To obtain the time correlation function, we have discussed to solve the equation in 
their linearized form as well as initial value problem with linearization referring to small deviations in the conserved variables 
from their equilibrium values. The result of such calculation is available in analytic form and their implications are thoroughly 
understood. 

 To make some of forgoing statements more explicit, we consider a typical equation that relates a time correlation function (𝑡) to 
its memory function (𝑡) is [9], 

,  (1) 

Where, we have suppressed the position dependence in both functions for simplicity. We will encounter the Integra-diff erential 
equation of this type. The utility of this equation is that, for given (𝑡) it can be used to calculate (𝑡). we will call equation (1), the 
memory function equation because it can be regarded as the defi nition of 𝑀(𝑡) in terms of 𝐶(𝑡). This point of view is not useful 
if the objective is to calculate (𝑡) by an approximation to 𝑀(𝑡), on the other hand if 𝐶(𝑡) were known from experiment, then (1) 
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should be inverted to represent the data in terms of 𝑀(𝑡). The reason that (𝑡) is called memory function can be seen from equation 
(1) since time correlation function describe the decay of spontaneous thermal fl uctuations. (𝑡) is a function with its maximum 
value at t=0 which decreases with time. 

 Equation (1) shows that the decay rate of ‘C’ at time ‘t’ depends on its value at earlier times and how much it resembles past 
history is expressed the memory 𝑀(𝑡). Suppose (𝑡), is sharply peaked function about t=0, the right hand side of (1) then gives the 
decay rate that is proportional to (𝑡). In this case the decay spends only on the instantaneous value of 𝐶(𝑡), so one can say that 
there is no memory function on the other hand if 𝑀(𝑡) is itself a slowly decaying function in time, then the value of C at diff erent 
times will be closely correlate a behavior which one can describe as memory eff ects. 

From equation(1) one has the relation . Let us suppose we know as often in case the initial value and initial 

curvature of 𝐶(𝑡) even though we do not know 𝐶(𝑡) ,then we can construct a model by writing 𝑀(𝑡) = 𝑀(0) = 1𝑓(𝑡),where 𝑓(𝑡) 
is model function with property 𝑓(0) = 1,whatever we chose for 𝑓(𝑡) we see that the approximation will preserve the short time 
behavior of 𝐶(𝑡) at least in terms of its initial value and initial will preserve the short time behavior of 𝐶(𝑡) at least in terms of its 
initial value and initial curvature. This is simplifi ed example of memory function models, which appear in much of the following 
discussions. Besides modeling (𝑡) by postulating a function (𝑡) one can determine the memory function by expressing its decay 
in terms of coupling to higher order time correlation function [10]. 

Spectral density 
We may defi ne spectral density as a Fourier transform of correlation function. The most direct way to understand this defi nition 
is the time correlation function for the emission or absorption of photon [11]. 

The Schrodinger equation in time dependent form is 

H =i  
t
 


   (2) 

The general solution is  

( )     
i i

Ht Et
t e e  

 
    (3) 

Where:  ℏ = Planck’s constant, E= Energy Eigen value (a constant) ,H = Hamiltonian operator, Ψ = wave function. 

Initially, the N-interacting molecule system has i  the quantum state. 

Consider Hamiltonian system be 𝐻0, with 𝐻0Ψ𝑗 = 𝐸𝑗Ψ𝑗. If we treat an applied electromagnetic fi eld as a perturbation to the 
Hamiltonian and now interact with this system. Hamiltonian fi eld is 𝐻1 = −𝜇𝐸.

The total Hamiltonian fi eld  is

0 1 0H  H  H  H  E      (4) 

Where, μ is the electric dipole moment. 

We have two states, that is initial state  and fi nal state  .  In fact, the frequency of the radiation is close to f iE E 
 
 

, the transition 

of the initial state into other quantum states 'f' will occur as a result of the application of external disturbance.

Using Bohr relations, if the fi eld is monochromatic [12]  

0
0( ) cos

2
i t i tE

E t E t e e         ,  (5) 

Here, 𝐸0 represents the amplitude of the fi eld. 

Because the fi eld is uniform or the wavelength is larger in comparison to molecular dimensions, the interaction between them 
can be expressed as 

1( ) . ( )H t M E t   (6) 
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Now, from Golden rule of time-dependent quantum mechanical perturbation theory [13], the probability per unit time of a 
transition from state i to state 'f' is formulated as,

   (7) 

Where,  𝑖 = 𝜔𝑓 − 𝜔𝑖. Multiplying this by ℏ𝜔𝑓𝑖 gives the rate of energy loss due to radiation in the transition state from  ‘i’ to  'f'. 
In total, summarizing all 'f', we get the rate of energy loss in transition from initial state ‘i’, to any other fi nal state. Multiplying 
Equation (7) by 𝜌𝑖, the probability that the system was in its initial state and summing over all ‘i’ then get  the rate of energy loss 
to the system from radiation.

(8)

Since the summation  and  go over all the quantum states of the system, we may interchange these indices in the summation over 
the second data function such That 

 (9)                                              

    

Since, negative frequency imply nothing so, 𝜔𝑓𝑖 = −𝜔𝑓𝑖 and |⟨𝑓|ℇ. 𝑀|𝑖⟩|2 = |⟨𝑖|ℇ. 𝑀|𝑓⟩|2 

         (10) 

If we assume that the system is initially in equilibrium, then 𝜌𝑓= 𝜌𝑖𝑒−𝛽ℏ𝜔𝑓𝑖                                                                                                 
So,  

(11)

                           𝜌𝑖− 𝜌𝑓= 𝜌𝑖(1 − 𝑒−𝛽ℏ𝜔𝑓𝑖)                                                                          
If we substitute this into eqn (10), we fi nd that  

                            (12)

                                                             (13) 

We have to defi ne the absorption cross-section 𝛼(𝜔) such that the cross section which is multiplied by the incident fl ux of 
radiation, known as the rate of energy loss from the fi eld into the system, this is called pointing vectors [14], having  magnitude   

Where μ=1,  for non-magnetic medium and v be the speed of light in medium and ε be the dielectric constant, c be the speed of 
light in vacuum, and n be  refractive index of the medium.  

If we divide (12) by S, then we obtain

It is convenient to use this eqn to defi ne an absorption line shape (𝜔) by 

 (14) 
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  (15)

This is Schrodinger’s representation of spectroscopy as transition between Bohr Stationary states. Since, equation 7 is derived 
from fi rst order perturbation theory in which the operators are independent with time (t). The wave function of the system varies 
with time. 

Two representation [Schrodinger’s representation and Heisenberg’s representation] agree for all time if  

 ((0), (𝑡)(0)) = ((𝑡), (0)(𝑡))  The time dependent wave function 𝜒(𝑡) and 𝜓(𝑡) obeys the Schrodinger’s  

equation                                                                                                        (16)                             

                                                                                  (17) 
Whose formal solution for a time independent Hamiltonian operator is

                         (18)
With a similar equation for (𝑡) 
Thus eqn (16) becomes, 

((0), (𝑡)(0)) = (𝜒(𝑡), 𝐴(0)𝜓(𝑡)) = (𝑈(𝑡)𝜒(0), 𝐴(0)𝑈(𝑡)𝜓(0)                          (19)
 = ((0), 𝑈∗(𝑡)𝐴(0)𝑈(𝑡)𝜓(0))  Now, the time dependent operator is related to a static operator by, 

 Equation 20 represents the Heisenberg’s operator. Now, we have the Heisenberg’s representation in equation 19, naturally leads 
to the spectroscopic time –correlation function. 

We have to convert equation (16) to the Heisenberg picture by introducing the Fourier transform of the Dirac delta function [15], 

And using the Einstein relation     , 
The delta function in the intensity expression is, 

                                                                                                        
Giving 

      

Now the state |𝑖⟩ and |𝑓⟩ are Eigen states of the system excluding the radiations that 

                                    

And                                                                                                                    (24)

Thus eqn (22) can be written as, 

                           (25) 

(20)

(21)

(22)

(23)
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Where,                                                                                                          

                                                                                                                           (26)

 Using closure relation 

   ∑𝑓⟨𝑖|⟨𝑓| = 1                                                          (27) 
Giving, 

                (28)
The summation over  (initial states) is a weighted Boltzmann average (𝜌𝑖 is the Boltzmann weighting factor) so this is nothing 
more than an equilibrium ensemble average. Thus we have, 

                            (29) 

  
So, for an isotropic fl uid, by averaging ϵ over all directions, it is seen that 

                           (30) 
This is the expected result that is called the line shape function (𝜔) that has been written as the Fourier transform of the time 
correlation function of the dipole moment operator of the absorbing molecules if no fi eld is applied. 

The line shape (𝜔) can be used to study the motion of the dipole moments of the molecules by Fourier inversion of itself. 

As an introduction, a correlation function represents the mean decay property of the system from its initial value. In this case, 
the property of the dipole moment, in general, is consider the dipole moment of the entire system(having N interacting dipole 
moments)c can be expressed as [16]:

                                              (31)

There are in addition to the terms such as (0). (𝑡), and cross terms between the dipole moments on diff erent molecules (0). (𝑡).  
Because of these cross terms, one cannot simply intercept 〈(0). (𝑡)〉 in terms of the re-orientation of single dipole molecule. In 
the other hand,  the dipole molecules are dissolved in some non-polar solvent, the cross terms are negligible and the correlation 
function  can be formulated as 

,                           (32) 

Hence,  the intensity expression becomes 

         (33) 

The time dependent operator (𝑡) plays an important role on the right hand side of this correlation function. Such type of correlation 
function is known as one sided correlation function. The one sided correlation function 〈𝜇. 𝜇(𝑡)〉 which follows the fact that the 
frequency spectrum 𝐼(𝜔) is a real quantity, that  is clear from the defi nition mentioned in equation (33), Thus letting  𝐶(𝑡) = 〈𝜇. 
(𝑡)〉, we have,

                                                         (34)

Electrical noise in plasma 

The fl uctuating current I(t) due to random thermal motion of charged particles gives rise to noise across it. The eff ective fl uctuating 
voltage in the resistor can be expressed as [6] 

 (𝑡) = 𝐼𝑅 = 𝑛𝑒𝑢̅𝐴𝑅                                                                   (35) 
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Where R is resistance, A is area of cross section, n be the no. of charged particles per unit volume and 𝑢̅ be the average velocity 
component of the charged particles along the length of plasma. The average velocity is given by   

                                         (36) 
Here sum is over all electrons or ions. From eqn (35) and (36), we have  

                                                                                              

Here,   are random variables. Now, charged particles are colliding during thermal motion. Let 𝜏𝑒 is the 

time between collisions called relaxation time. 

The correlation function may be given the form 

 (𝜏) = (𝑡)(𝑡 + 𝜏) = 𝑣̅𝑖2𝑒−𝜏⁄𝜏𝑒                                                                   (37)     

 From eqn (34), spectral density is given by \

          
  

                                                      (38)                             
 Since, 𝜔𝜏𝑒≪≪ 1 , 𝑒

                       (39)                  

We know that Electrical conductivity,

We have, 

                                          (40) 

This is relation relating spectral density, (𝜔) of the fl uctuating voltage to the resistance. This relation shows that spectral density 
is independent upon the frequency. 

Putting,

                       ,called resistivity of plasma and where coulomb Logarithm                      (41)                                                                                               

Results and Discussion 
The process in which a quantity does not depend in a well-defi ned way on the independent variable is called random process.  
Spectral density of a randomly fl uctuating quantity is defi ned as ensemble average of the time average in the power dissipation 
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per unit frequency band width. The fl uctuating current I(t) due to random thermal motion of charged particles in plasma give rise 
to a random output called noise across it. The spectral density in terms of temperature is given by equation (42) 

                                                                                                                                         (42)

This relation shows that spectral density is independent with frequency and is dependent on its length, cross section of the plasma 
and temperature. So spectral density is random process and produces noise across the plasma. 

The relevant plot for the variation of the spectral density with temperature for the Q-Machine and Fusion reactor and their 
comparative study, a combined variation for both the Q-Machine and Fusion Reactor is given in graph below. 

The variation of the spectral density in case of the plasma in Q-machine [7] is found to depend upon the temperature of plasma. 
It is observed that the curve shifts towards the origin as the plasma length is decreased while keeping the cross section fi xed. 

In each case the increase in temperature causes to decrease in the spectral density, showing a sharp decrease in the initial phase, 
depicting a parabolic nature. Similar variation is seen for the fusion reactor. And from their combined plot it is seen that for the 
same values of the parameters, the curve for the fusion reactor was situated farther away from the origin than the curve for the 
Q-Machine, indicating a more pronounced eff ect of the variations involved for the fusion reactor than for the Q-machine.  

            

Fig 1.  Variation of spectral density with temperature for both Q-Machine and Fusion Reactor a comparative study 

Conclusions 
In conclusion, this contribution focuses on studying time correlation functions and deriving spectral density. The key fi nding 
is that the spectral density exhibits a random, frequency-independent nature, leading to the production of noise in plasma. 
Comparative analysis between the Q-Machine and Fusion reactor reveals that the Fusion reactor produces more noise. This 
research paves the way for future investigations into plasma devices like nuclear reactors, Q-Machines, and toroidal devices.
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