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ABSTRACT 

In this paper, we review and verify several identities involving basic hypergeometric 
series including the q- binomial theorem. These identities play a fundamental role in 
the theory of q-series and may serve as a useful reference for beginners interested in 
this area of mathematics. 
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1.  INTRODUCTION, NOTATION AND DEFINITIONS 

In 1812, Gauss [1-5] presented to the Royal Society of Sciences 
at G 𝑜̈ ttingen his famous paper, in which he considered the 
infinite series  

1 +
𝑎.𝑏

1.𝑐
𝑧 +

𝑎(𝑎+1)𝑏(𝑏+1)

1.2.𝑐(𝑐+1)
𝑧2 +

𝑎(𝑎+1)(𝑎+2)𝑏(𝑏+1)(𝑏+2)

1.2.3.𝑐(𝑐+1)(𝑐+2)
𝑧3+. . . (1.1)  

as function of a, b, c, z where it is assumed that 𝑐 ≠
0, −1, −2, −3, . ..  .He showed that the series converges 
absolutely for  |𝑧| < 1 and for |z|=1when Re (c-a-b) > 0. This 

series is denoted by 𝐹2 1 [
𝑎, 𝑏; 𝑧
  𝑐

].  

𝑇ℎ𝑢𝑠 𝐹2 1 [
𝑎, 𝑏; 𝑧
𝑐

] = 1 + ∑
(𝑎)𝑛(𝑏)𝑛𝑧𝑛

(𝑐)𝑛𝑛!

∞

𝑛=1

𝑓𝑜𝑟 𝑐

≠ 0, −1, −2, −3, ….                              (1.2) 

𝑤ℎ𝑒𝑟𝑒 (𝑎)𝑛 = 𝑎(𝑎 + 1)(𝑎 + 2) … (𝑎 + 𝑛 − 1), 𝑛
≥ 1 𝑎𝑛𝑑 (𝑎)0 = 1 

 𝐼𝑓 𝑎 = 1, 𝑏 = 𝑐, 𝑠eries (1.1) yields thegeometric series  
1 + 𝑧 + 𝑧2 + 𝑧3+. . .  , |𝑧| < 1                               (1.3) 

𝐼𝑓 𝑏 = 𝑐,  series (1.1) reduces to binomial theorem 

1 +
𝑎

1!
𝑧 +

𝑎(𝑎 + 1)

2!
𝑧2+. . . = (1 − 𝑧)−𝑎, |𝑧| < 1.          (1.4) 

 
Another generalization of Gauss series [2-7] is the generalized 
hypergeometric series with r numerator parameters 
𝑎1, 𝑎2, . . . , 𝑎𝑟  and s denominator parameters 𝑏1, 𝑏2, . . . , 𝑏𝑠  
defined by 

𝐹𝑟 𝑠 [
𝑎1, 𝑎2, . . . , 𝑎𝑟; 𝑧
𝑏1, 𝑏2, . . . , 𝑏𝑠

] = ∑
(𝑎1)𝑛(𝑎2)𝑛. . . (𝑎𝑟)𝑛𝑧𝑛

𝑛! (𝑏1)𝑛(𝑏2)𝑛. . . (𝑏𝑠)𝑛

∞

𝑛=0

     (1.5) 

in which no denominator parameters 𝑏1, 𝑏2, . . . , 𝑏𝑠 are allowed 
to be zero or negative integers. Many other mathematicians 
studied similar series, notably the Swiss L. Euler [8], A. T. 
Vandermonde [9] Slater [6, 7]. After thirty-three years of Gauss' 
paper, Heine [10-12] introduced the series  

1 +
(1 − 𝑞𝑎)(1 − 𝑞𝑏)

(1 − 𝑞)(1 − 𝑞𝑐)
𝑧

+
(1 − 𝑞𝑎)(1 − 𝑞𝑎+1)(1 − 𝑞𝑏)(1 − 𝑞𝑏+1)

(1 − 𝑞)(1 − 𝑞2)(1 − 𝑞𝑐)(1 − 𝑞𝑐+1)
𝑧2+ . . .        (1.6) 

𝑤ℎ𝑒𝑟𝑒 𝑐 ≠ 0, −1, −2, . .. 

Series (1.6) converges absolutely for |z| < 1 when |q| < 1. Series 
(1.6) tends to Gauss' series(1.1) as 𝑞 → 1 , due to 

 lim
𝑞→1

1−𝑞𝑛

1−𝑞
 

The series (1.6) is called Heine's series or basic hypergeometric 
series or q-hypergeometric series and is denoted by 

𝜙2 1 [
𝑎, 𝑏; 𝑞, 𝑧
  𝑐

]. 

𝑇ℎ𝑢𝑠,  𝜙2 1 [
𝑎, 𝑏; 𝑞, 𝑧
  𝑐

] = ∑
(𝑎; 𝑞)𝑛(𝑏; 𝑞)𝑛

(𝑞; 𝑞)𝑛(𝑐; 𝑞)𝑛

∞

𝑛 = 0

𝑧𝑛      (1.7) 

𝑤ℎ𝑒𝑟𝑒 (𝑎; 𝑞)𝑛

= {
1 ,                                      𝑛 = 0

(1 − 𝑎)(1 − 𝑎𝑞) … (1 − 𝑎𝑞𝑛−1),  𝑛 = 1,2,3, …   (1.8)
 

𝑖𝑠 𝑞 − shifted factorial.   

 For brevity, 
 let   (𝑎1, 𝑎2, . . . , 𝑎𝑟; 𝑞)𝑛 = (𝑎1; 𝑞)𝑛(𝑎2; 𝑞)𝑛. . . (𝑎𝑟; 𝑞)𝑛 

The generalized basic hypergeometric [13] series is defined by 
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𝜙𝑟 𝑠 [
𝑎1, 𝑎2, . . . 𝑎𝑟; 𝑞, 𝑧
𝑏1, 𝑏2, . . . 𝑏𝑠

] = ∑
(𝑎1, 𝑎2, . . . , 𝑎𝑟; 𝑞)𝑛𝑧𝑛

(𝑏1, 𝑏2, . . . , 𝑏𝑠; 𝑞)𝑛

∞

𝑛=0

      (1.9) 

𝑤ℎ𝑒𝑟𝑒  (
𝑛
2

) =
𝑛(𝑛 − 1)

2
 

The infinite series in (1.9) is absolutely convergent for all values 
of 𝑧 𝑖𝑓 𝑟 ≤ 𝑠 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑟 =  𝑠 + 1,  it converges in the region 
|𝑧| < 1. 

1.1 Identities frequently used in basic hypergeometric series 

In this section we shall discuss about the following identities 
(1.2.30 - 1.2.40), p.6) [3].  These identities are frequently used in 
number theory [13] such as partition and mock theta functions. 
The Notebooks of Ramanujan and his 'Lost' Notebook, containing 
about 4000 Entries/theorem will continue to be eternal sources 
of inspiration to the mathematicians of the world. Ramanujan 
did not provide proofs of maximum such Entries/ theorem. 
Andrews [14-18], Slater [6, 7] and many other mathematicians 
gave the proofs of some such Entries/theorem. Anyone who 
interested in these branches of mathematics, the identities 
mentioned below are crucial prerequisites for studying such 
matter. To prove these identities q-factorial relation mentioned 
in (1.8) is used. 

(a)  (𝑎; 𝑞)𝑛 =
(𝑎;𝑞)∞

(𝑎𝑞𝑛;𝑞)∞
                                              … (2.1) 

Proof: (𝑎; 𝑞)𝑛 = (1 − 𝑎)(1 − 𝑎𝑞)(1 − 𝑎𝑞2) … . (1 − 𝑎𝑞𝑛−1) 
        

=
(1 − 𝑎)(1 − 𝑎𝑞)(1 − 𝑎𝑞2) … . (1 − 𝑎𝑞𝑛−1)(1 − 𝑎𝑞𝑛)(1 − 𝑎𝑞𝑛+1)

(1 − 𝑎𝑞𝑛)(1 − 𝑎𝑞𝑛+1) … .  𝑡𝑜∞
  

         =  
(𝑎; 𝑞)∞

(𝑎𝑞𝑛; 𝑞)∞
   

(b)     (𝑎−1𝑞1−𝑛; 𝑞)𝑛 = (𝑎; 𝑞)𝑛(−𝑎−1)𝑛𝑞
− (𝑛

2
)

        … (2.2) 

𝐏𝐫 𝐨 𝐨𝐟:  

(𝑎−1𝑞1−𝑛; 𝑞)𝑛 = (1 − 𝑎−1𝑞1−𝑛)(1 − 𝑎−1𝑞1−𝑛𝑞)(1

− 𝑎−1𝑞1−𝑛𝑞2). . . (1 − 𝑎−1𝑞1−𝑛𝑞𝑛−1) 

                =   (1 − 𝑎−1𝑞1−𝑛)(1 − 𝑎−1𝑞2−𝑛)(1

− 𝑎−1𝑞3−𝑛). . . (1 − 𝑎−1𝑞−1)(1 − 𝑎−1) 

                =  
(−1)𝑛(1 − 𝑎)(1 − 𝑎𝑞). . . (1 − 𝑎𝑞𝑛−1)

𝑎𝑛𝑞
𝑛(𝑛−1)

2

 

             =   (𝑎; 𝑞)𝑛(−𝑎−1)𝑛𝑞
−(𝑛

2
)
 

(𝒄) (𝑎; 𝑞)𝑛−𝑘 =  
(𝑎; 𝑞)𝑛(−𝑞𝑎−1)𝑘𝑞

(𝑘
2

)−𝑛𝑘

(𝑎−1𝑞1−𝑛; 𝑞)𝑘
          … (2.3) 

𝐏𝐫𝐨𝐨𝐟: (𝑎; 𝑞)𝑛−𝑘 =   (1 − 𝑎)(1 − 𝑎𝑞)(1 − 𝑎𝑞2) … . (1

− 𝑎𝑞𝑛−𝑘−2)(1 − 𝑎𝑞𝑛−𝑘−1) 

=
(1 − 𝑎)(1 − 𝑎𝑞)(1 − 𝑎𝑞2). . . . (1 − 𝑎𝑞𝑛−𝑘−1)(1 − 𝑎𝑞𝑛−𝑘). . (1 − 𝑎𝑞𝑛−1)

(1 − 𝑎𝑞𝑛−𝑘)(1 − 𝑎𝑞𝑛−𝑘+1). . . (1 − 𝑎𝑞𝑛−1)
 

       =
(𝑎; 𝑞)𝑛

(−1)𝑘(1 − 𝑎−1𝑞1−𝑛)(1 − 𝑎−1𝑞2−𝑛). . . (1 − 𝑎−1𝑞𝑘−𝑛)

(𝑎−1)𝑘𝑞
𝑘(𝑘+1)

2  − 𝑛𝑘

 

       =
(𝑎; 𝑞)𝑛(−𝑞𝑎−1)𝑘𝑞

(𝑘
2

)−𝑛𝑘

(𝑎−1𝑞1−𝑛; 𝑞)𝑘
. 

(𝐝) (𝑎; 𝑞)𝑛+𝑘 = (𝑎; 𝑞)𝑛(𝑎𝑞𝑛; 𝑞)𝑘                    (2.4) 
𝐏𝐫𝐨𝐨𝐟:  
(𝑎; 𝑞)𝑛+𝑘 =   (1 − 𝑎)(1 − 𝑎𝑞)(1 − 𝑎𝑞2) … (1 − 𝑎𝑞𝑛) … 

(1 − 𝑎𝑞𝑛+𝑘−1) = (𝑎; 𝑞)𝑛(𝑎𝑞𝑛; 𝑞)𝑘 

(𝐞) (𝑎𝑞𝑛; 𝑞)𝑘 =
(𝑎; 𝑞)𝑘(𝑎𝑞𝑘; 𝑞)𝑛

(𝑎; 𝑞)𝑛
                         (2.5) 

𝐏𝐫𝐨𝐨𝐟: (𝑎𝑞𝑛; 𝑞)𝑘 = (1 − 𝑎𝑞𝑛)(1 − 𝑎𝑞𝑛𝑞). . . (1 − 𝑎𝑞𝑛𝑞𝑘−1) 
             

=
(1 − 𝑎)(1 − 𝑎𝑞). . . (1 − 𝑎𝑞𝑛−1)(1 − 𝑎𝑞𝑛)(1 − 𝑎𝑞𝑛𝑞). . . (1 − 𝑎𝑞𝑛𝑞𝑘−1)

(1 − 𝑎)(1 − 𝑎𝑞). . . (1 − 𝑎𝑞𝑛−1)
 

              =  
(𝑎; 𝑞)𝑘(𝑎𝑞𝑘; 𝑞)𝑛

(𝑎; 𝑞)𝑛
 

(𝐟) (𝑎𝑞𝑘; 𝑞)𝑛−𝑘 =
(𝑎; 𝑞)𝑛

(𝑎; 𝑞)𝑘
                                 (2.6) 

𝐏𝐫𝐨𝐨𝐟: (𝑎𝑞𝑘; 𝑞)𝑛−𝑘

= (1 − 𝑎𝑞𝑘)(1 − 𝑎𝑞𝑘𝑞). . . (1 − 𝑎𝑞𝑘𝑞𝑛−𝑘−1)         

=
(1 − 𝑎)(1 − 𝑎𝑞). . . (1 − 𝑎𝑞𝑘−1)(1 − 𝑎𝑞𝑘)(1 − 𝑎𝑞𝑘+1). . . (1 − 𝑎𝑞𝑘+𝑛−𝑘−1)

(1 − 𝑎)(1 − 𝑎𝑞). . . (1 − 𝑎𝑞𝑘−1)
 

      =
(𝑎; 𝑞)𝑛

(𝑎; 𝑞)𝑘
 

(𝐠) (𝑎𝑞2𝑘 ; 𝑞)𝑛−𝑘 =
(𝑎; 𝑞)𝑛(𝑎𝑞𝑛; 𝑞)𝑘

(𝑎; 𝑞)2𝑘
                       (2.7) 

𝐏𝐫𝐨𝐨𝐟: (𝑎𝑞2𝑘; 𝑞)𝑛−𝑘

= (1 − 𝑎𝑞2𝑘)(1 − 𝑎𝑞2𝑘𝑞). . . (1

− 𝑎𝑞2𝑘 +𝑛−𝑘−1
)                 

  =
(𝑎; 𝑞)2𝑘(1 − 𝑎𝑞2𝑘)(1 − 𝑎𝑞2𝑘𝑞). . . (1 − 𝑎𝑞𝑛𝑞𝑘−1)

(𝑎; 𝑞)2𝑘
 

             

=  
(1 − 𝑎)(1 − 𝑎𝑞). . . (1 − 𝑎𝑞𝑛−1)(1 − 𝑎𝑞𝑛). . . (1 − 𝑎𝑞𝑛𝑞𝑘−1)

(𝑎; 𝑞)2𝑘
 

             =  
(𝑎; 𝑞)𝑛(𝑎𝑞𝑛; 𝑞)𝑘

(𝑎; 𝑞)2𝑘
 

 

(𝐡) (𝑞−𝑛; 𝑞)𝑘 =
(𝑞; 𝑞)𝑛

(𝑞; 𝑞)𝑛−𝑘

(−1)𝑘𝑞
(𝑘

2
)−𝑛𝑘

           (2.8) 

𝐏𝐫𝐨𝐨𝐟: (𝑞−𝑛; 𝑞)𝑘 = (1 − 𝑞−𝑛)(1 − 𝑞−𝑛𝑞). . . (1 − 𝑞−𝑛𝑞𝑘−1) 

              =
(−1)𝑘(1 − 𝑞𝑛)(1 − 𝑞𝑛−1). . . (1 − 𝑞𝑛−𝑘+1)

𝑞
𝑘(𝑘−1)

2
−𝑛𝑘

 

   =
(−1)𝑘(𝑞; 𝑞)𝑛−𝑘(1 − 𝑞𝑛−𝑘+1)(1 − 𝑞𝑛−𝑘+2). . . (1 − 𝑞𝑞𝑛−1)

𝑞
𝑘(𝑘−1)

2
−𝑛𝑘(𝑞; 𝑞)𝑛−𝑘

 

             =
(𝑞; 𝑞)𝑛(−1)𝑘𝑞

(𝑘
2

)−𝑛𝑘

(𝑞; 𝑞)𝑛−𝑘
 

(𝐢) (𝑎𝑞−𝑛; 𝑞)𝑘 =
(𝑎; 𝑞)𝑘(𝑞𝑎−1; 𝑞)𝑛𝑞−𝑛𝑘

(𝑎−1𝑞1−𝑘; 𝑞)𝑛
               (2.9) 

𝐏𝐫𝐨𝐨𝐟: (𝑎𝑞−𝑛; 𝑞)𝑘 =
(𝑎𝑞−𝑛; 𝑞)∞

(𝑎𝑞𝑘−𝑛; 𝑞)∞
 

    =
(𝑎; 𝑞)∞

(𝑎; 𝑞)−𝑛

(𝑎; 𝑞)𝑘−𝑛

(𝑎; 𝑞)∞
=

(𝑎; 𝑞)𝑘−𝑛

(𝑎; 𝑞)−𝑛
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    =
(

𝑞
𝑎

; 𝑞)
𝑛

(𝑎; 𝑞)𝑘(𝑎𝑞𝑘; 𝑞)−𝑛

(−1)𝑛𝑎−𝑛𝑞
𝑛(𝑛+1)

2

 

   =  
(𝑞𝑎−1; 𝑞)𝑛(𝑎; 𝑞)𝑘

(−1)𝑛𝑎−𝑛𝑞
𝑛(𝑛+1)

2

×
(−1)𝑛(𝑎𝑞𝑘)−𝑛𝑞

𝑛(𝑛+1)
2

(
𝑞

𝑎𝑞𝑘 ; 𝑞)
𝑛

 

   =
(𝑎; 𝑞)𝑘(𝑞𝑎−1; 𝑞)𝑛𝑞−𝑛𝑘

(𝑎−1𝑞1−𝑘; 𝑞)𝑛
 

(𝐣) (𝑎; 𝑞)2𝑛 = (𝑎; 𝑞2)𝑛(𝑎𝑞; 𝑞2)𝑛                       …   (2.10) 

𝐏𝐫𝐨𝐨𝐟: (𝑎; 𝑞)2𝑛 = (1 − 𝑎)(1 − 𝑎𝑞)(1 − 𝑎𝑞2) … (1 − 𝑎𝑞2𝑛−1) 

     =   (1 − 𝑎)(1 − 𝑎𝑞2)(1 − 𝑎𝑞4) … (1 − 𝑎𝑞2𝑛−2) ×  (1

− 𝑎𝑞)(1 − 𝑎𝑞3)(1 − 𝑎𝑞5) … (1 − 𝑎𝑞2𝑛−1

= (𝑎; 𝑞2)𝑛(𝑎𝑞; 𝑞2)𝑛 

(𝐤) (𝑎2; 𝑞2)𝑛 = (𝑎; 𝑞)𝑛(−𝑎; 𝑞)𝑛                         … (2.11) 

𝐏𝐫𝐨𝐨𝐟: (𝑎2; 𝑞2)𝑛 = (1 − 𝑎2)(1 − 𝑎2𝑞2). . . (1 − 𝑎2𝑞2(𝑛−1)) 

                    = {(1 − 𝑎)(1 − 𝑎𝑞). . . (1 − 𝑎𝑞𝑛−1)} × 

                             {(1 + 𝑎)(1 + 𝑎𝑞). . . (1 − 𝑎𝑞𝑛−1)} 

                 =   (𝑎; 𝑞)𝑛(−𝑎; 𝑞)𝑛 

1.2 The q- binomial theorem 

The most fundamental summation formula in the theory of basic 
hypergeometric series is the q- binomial theorem [3 13]   

𝜙1 0[𝑎; −; 𝑞, 𝑧] = ∑
(𝑎; 𝑞)𝑛

(𝑞; 𝑞)𝑛
𝑧𝑛

∞

𝑛=0

=
(𝑎𝑧; 𝑞)∞

(𝑧; 𝑞)∞
, |𝑧| < 1, |𝑞|

< 1   (3.1) 

𝐏𝐫𝐨𝐨𝐟:  𝐿𝑒𝑡 𝑓(𝑧)   =  
(𝑎𝑧; 𝑞)∞

(𝑧; 𝑞)∞
                          …     (3.2) 

𝑆𝑖𝑛 𝑐 𝑒 𝑓(𝑧) 𝑖𝑠 𝑎𝑛 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 |𝑧| < 1,  𝑠𝑜 𝑤𝑒 
          ℎ𝑎𝑣𝑒 𝑖𝑡𝑠 𝑡𝑎𝑦𝑙𝑜𝑟′𝑠  𝑒𝑥𝑝 𝑎 𝑛𝑠𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚 

         𝑓(𝑧)   =   ∑ 𝐴𝑛𝑧𝑛                                     …  (3.3)

∞

𝑛=0

 

        𝑓(𝑧𝑞)  =  
(𝑎𝑧𝑞; 𝑞)∞

(𝑧𝑞; 𝑞)∞
=

(1 − 𝑧)

(1 − 𝑎𝑧)

(𝑎𝑧; 𝑞)∞

(𝑧; 𝑞)∞
 

⇒   (1 − 𝑎𝑧)𝑓(𝑧𝑞) = (1 − 𝑧)𝑓(𝑧) 

⇒ (1 − 𝑎𝑧) ∑ 𝐴𝑛𝑧𝑛𝑞𝑛

∞

𝑛=0

= (1 − 𝑧) ∑ 𝐴𝑛𝑧𝑛

∞

𝑛=0

           (3.4) 

   Equating the coefficients of znon both,  we get 
 𝐴𝑛𝑞𝑛 − 𝑎𝐴𝑛−1𝑞𝑛−1 = 𝐴𝑛 − 𝐴𝑛−1 
⇒   𝐴𝑛(1 − 𝑞𝑛) = 𝐴𝑛−1(1 − 𝑎𝑞𝑛−1) 

⇒   𝐴𝑛 = (
1 − 𝑎𝑞𝑛−1

1 − 𝑞𝑛 ) 𝐴𝑛−1      (3.5) 

𝐹𝑟𝑜𝑚 (3.5) 𝑤𝑒 𝑓𝑖𝑛𝑑 

𝐴1 =
1 − 𝑎

1 − 𝑞
𝐴0, 𝐴2 =

1 − 𝑎𝑞

1 − 𝑞2 𝐴1 =
(1 − 𝑎)(1 − 𝑎𝑞)

(1 − 𝑞)(1 − 𝑞2)
𝐴0

 

Pr o ceeding in this way,  we get 

𝐴𝑛 =
(1 − 𝑎)(1 − 𝑎𝑞). . . (1 − 𝑎𝑞𝑛−1)

(1 − 𝑞)(1 − 𝑞2). . . (1 − 𝑞𝑛)
𝐴0 =

(𝑎; 𝑞)𝑛

(𝑞; 𝑞)𝑛
𝐴0    (3.6) 

𝐅rom (3.3),  f(0) = A0 andfrom (3.2) f(0) = 1,  𝑠𝑜 𝐴0 = 1 

Putting this value in (3.6),  we get 𝐴𝑛 =
(𝑎; 𝑞)𝑛

(𝑞; 𝑞)𝑛
 

Using this value in (3.3),  we get  

𝑓(𝑧)   = ∑
(𝑎; 𝑞)𝑛

(𝑞; 𝑞)𝑛

∞

𝑛=0

𝑧𝑛 =
(𝑎𝑧; 𝑞)∞

(𝑧; 𝑞)∞
 

1.3 Some Special unsolved problem [13] obtained by using 
section (1) and (2) 

(𝐢) (𝑎𝑞−𝑛; 𝑞)𝑛 = (
𝑞

𝑎
; 𝑞)

𝑛
(−

𝑎

𝑞
)

𝑛

𝑞
−(𝑛

2
)
 

𝐏𝐫𝐨𝐨𝐟: (𝑎𝑞−𝑛; 𝑞)𝑛

= (1 − 𝑎𝑞−𝑛)(1 − 𝑎𝑞−𝑛𝑞). . . (1
− 𝑎𝑞−𝑛𝑞𝑛−2)(1 − 𝑎𝑞−𝑛𝑞𝑛−1) 

          =   (
𝑞

𝑎
− 1) (

𝑞2

𝑎
− 1) . . . (

𝑞𝑛−1

𝑎
− 1) (

𝑞𝑛

𝑎
− 1)

𝑎𝑛

𝑞
𝑛(𝑛+1)

2

 

              = (
𝑞

𝑎
; 𝑞)

𝑛
(−

𝑎

𝑞
)

𝑛

𝑞
−(𝑛

2
)
. 

(𝐢𝐢) (𝑎𝑞−𝑘−𝑛; 𝑞)𝑛 =
(𝑞/𝑎; 𝑞)𝑛+𝑘(−𝑎)𝑛𝑞

(𝑛
2

) − 𝑛𝑘

(𝑞/𝑎; 𝑞)𝑘
 

𝐏𝐫𝐨𝐨𝐟: (𝑎𝑞−𝑘−𝑛; 𝑞)𝑛 = (1 − 𝑎𝑞−𝑘−𝑛)(1 − 𝑎𝑞−𝑘−𝑛+1). . .× 

                (1 − 𝑎𝑞−𝑘−𝑛+𝑛−2)(1 − 𝑎𝑞−𝑘−𝑛+𝑛−1)

=  
(−𝑎)𝑛 (1 −

𝑞𝑘+1

𝑎
) (1 −

𝑞𝑘+2

𝑎
) . . . (1 −

𝑞𝑘+𝑛−1

𝑎
) (1 −

𝑞𝑘+𝑛

𝑎
)

𝑞𝑘𝑛+
𝑛(𝑛−1)

2

 

 =  
(𝑞/𝑎; 𝑞)𝑛+𝑘

(𝑞/𝑎; 𝑞)𝑘
 
(−𝑎)𝑛𝑞−𝑛𝑘

𝑞𝑛(𝑛−1)/2
=

(𝑞/𝑎; 𝑞)𝑛+𝑘(−𝑎)𝑛𝑞
(𝑛

2
)−𝑛𝑘

(𝑞/𝑎; 𝑞)𝑘

 (𝐢𝐢𝐢) 
(𝑞𝑎1/2, −𝑞𝑎1/2; 𝑞)

𝑛

(𝑎1/2, −𝑎1/2; 𝑞)𝑛
=

1 − 𝑎𝑞2𝑛

1 − 𝑎
 

𝐏𝐫𝐨𝐨𝐟: 
(𝑞𝑎1/2, −𝑞𝑎1/2; 𝑞)

𝑛

(𝑎1/2, −𝑎1/2; 𝑞)𝑛
 

=
(1−𝑞𝑎1/2)(1−𝑞2𝑎1/2)...(1−𝑞𝑛𝑎1/2)(1+𝑞𝑎1/2)(1+𝑞2𝑎1/2)...(1+𝑞𝑛𝑎1/2)

(1−𝑎1/2)(1−𝑞𝑎1/2)...(1−𝑞𝑛−1𝑎1/2)(1+𝑎1/2)(1+𝑞𝑎1/2)...(1+𝑞𝑛−1𝑎1/2)
  

=  
(1 − 𝑞2𝑎)(1 − 𝑞4𝑎). . . (1 − 𝑞2(𝑛−1)𝑎)(1 − 𝑞2𝑛𝑎)

(1 − 𝑎)(1 − 𝑞2𝑎). . . (1 − 𝑞2(𝑛−1)𝑎)
 

=  
1 − 𝑎𝑞2𝑛

1 − 𝑎
 

(𝐢𝐯) (𝑎; 𝑞)∞ = (𝑎1/2, −𝑎1/2, (𝑎𝑞)1/2, −(𝑎𝑞)1/2)
∞

 

Proof: (𝑎; 𝑞)∞ = (1 − 𝑎)(1 − 𝑎𝑞)(1 − 𝑎𝑞2)(1 − 𝑎𝑞3)(1
− 𝑎𝑞4). . .  𝑡𝑜 ∞ 

 =   (1 − (𝑎1/2)2)(1 − {(𝑎𝑞)1/2}2)(1 − {(𝑎1/2𝑞)}2). . . 𝑡𝑜 ∞ 

 =   {(1 − 𝑎1/2)(1 − 𝑎1/2𝑞). . .  𝑡𝑜∞}{(1 + 𝑎1/2)(1

+ 𝑎1/2𝑞). . .  𝑡𝑜∞} × 

{(1 − (𝑎𝑞)1/2)(1 − (𝑎𝑞)1/2𝑞). . .  𝑡𝑜∞}{(1 + (𝑎𝑞)1/2)(1

+ (𝑎𝑞)1/2𝑞). . .  𝑡𝑜∞} 

= (𝑎1/2 − 𝑎1/2(𝑎𝑞)1/2 − (𝑎𝑞)1/2)
∞

 

  

2. CONCLUSION 

 In the paper, we reviewed some identities of basic 
hypergeometric series which are essential for entering the higher 
q- series. Without those identities we can't enter to study the 
Ramanujan's work. Those identities and q-binomial theorem are 
proved by using the q-shifted factorial mentioned in (1.8). These 
identities are necessary but not sufficient for such higher study. 
Also, in the paper, with the help of those identities, some 
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unsolved problem of Gasper and Rahman are solved. We hope 
this paper will help to attract the beginners in this branch of 
mathematics. 
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