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In this paper, we review and verify several identities involving basic hypergeometric
series including the g- binomial theorem. These identities play a fundamental role in
the theory of g-series and may serve as a useful reference for beginners interested in
this area of mathematics.
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1. INTRODUCTION, NOTATION AND DEFINITIONS

In 1812, Gauss [1-5] presented to the Royal Society of Sciences
at Gattingen his famous paper, in which he considered the
infinite series

ab a(a+1)b(b+1) o
1+ 1.c z+ 1.2.c(c+1)

a(a+1)(a+2)b(b+1)(b+2) 23
1.2.3.c(c+1)(c+2) * (1 1)

as function of a, b, ¢, z where it is assumed that c #

0,—1,—2,—-3,... .He showed that the series converges
absolutely for |z| < 1 and for |z|=1when Re (c-a-b) > 0. This
series is denoted by ,F; [a,cb; Z].
a, b Z N (a)n(b)nzn
Thus ,F; [ ] =1+ Z ©on! for c
n=
+0,—-1,-2,-3, ... (1.2)

where (), =ala+ D(a+2)..(a+n—-1),n
>1and (@) =1
If a=1,b = c,series (1.1) yields thegeometric series

1+z+22+73+... ,|z| <1 (1.3)
If b =c, series (1.1) reduces to binomial theorem
a a(a+1
1+ e %sz L=1-2%z] < 1. (1.4)

Another generalization of Gauss series [2-7] is the generalized
hypergeometric series with r numerator parameters
aq,ay,...,a, and s denominator parameters by, b,,...,bs
defined by

E ‘11,‘12,---,(11»}2] _
™5 by, b,,..., by

(@) (@) ne - (@)nz"
= n! (bl)n(bz)n- o (bs)n

(1.5)
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in which no denominator parameters by, b, ..., bs are allowed
to be zero or negative integers. Many other mathematicians
studied similar series, notably the Swiss L. Euler [8], A. T.
Vandermonde [9] Slater [6, 7]. After thirty-three years of Gauss'
paper, Heine [10-12] introduced the series
a b
1Jr(l—q )1 -gq )Z
1-91-q°)
(1-gM1—q*)(1 -¢")(1 - q"*)
Q-9 -¢*)A-g)1—qh)
where ¢ # 0,—1,-2,...

z%+ ...

(1.6)

Series (1.6) converges absolutely for [z] <1 when [q/ < 1. Series
(1.6) tends to Gauss' series(1.1) as g—1 , due to
lim =2
q-1 1-q
The series (1.6) is called Heine's series or basic hypergeometric

series or g-hypergeometric series and is denoted by
a,b;q,
ZA !
bigz]_ N (@ Dnlb; Dn
Thus, @.D:4q,z n(17)
i . G OnG D
where (a;q)n
_ {1 , n=20
“l1-a)(1-aq)..(1-aq™ ), n=123,.. (1.8)
is q — shifted factorial.
For brevity,
let (ag,az....ar @Qn = (a1; On(az; Dn. .. (@r; On

The generalized basic hypergeometric [13] series is defined by
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(d) (@ D+ = (@ @)n(aq™; @ (24)
n
a,,az,... ar, a.2] O (@18, @)nz Proof:
95 |y, b by, by, by; (1.9) D = (1— (1 - ag)(1 - ag®) ..(1 - ag™
by, ... b 4 (b, by, bs; @)n (@ Pnik= A-a)A—aq)(1 —aq?)..(1—aq™) ..
where () = "(n -n " (1 —ag"™*™) = (a;9)n(aq"; Qs
N2 (a; Q) (ag"; Pn
The infinite series in (1.9) is absolutely convergent for all values (e) (aq™; Py = T won (2.5)
of zif r<sand for r = s+ 1, it converges in the region ’ _
o ! Proof: (aq™; )i = (1 - ag)(1 - ag"q)...(1 - ag"q"~)
1.1 Identities frequently used in basic hypergeometric series _ A-a)(1—-aq)...(1 —aq" H(A - ag™)(1 — aq™q)...(1 —aq™q*™1)
In this section we shall discuss about the following identities _ a . a)(1 —aq)...(1—aq"™)
(1.2.30-1.2.40), p.6) [3]. These identities are frequently used in - M
number theory [13] such as partition and mock theta functions. (@ On
The Notebooks of Ramanujan and his 'Lost' Notebook, containing f K. _ (a;9)n
about 4000 Entries/theorem will continue to be eternal sources (0 (@q" On-x = (a; @ (2.6)

of inspiration to the mathematicians of the world. Ramanujan
did not provide proofs of maximum such Entries/ theorem.
Andrews [14-18], Slater [6, 7] and many other mathematicians =1 -aq®)(1 - aqg*q)...(1 — aqg¥q™* 1)

gave the proofs of some such Entries/theorem. Anyone who k-1 X K41 Ktn—k—1
interested in these branches of mathematics, the identities = A-a)d=aqg)..A-aq”)A=aq)dA -aq™)...(A~aq )

Proof: (aq®; q)n—k

mentioned below are crucial prerequisites for studying such (1-a)(1-ag)...(1-ag"™"
matter. To prove these identities g-factorial relation mentioned (@ Dn
in (1.8) is used. = (@ Dr
(@) (@5 @) = o= - 21) @ @™
Proof: (a; ), = (1 —a)(1 —aq)(1 — aq?) ...(1 —aq™™ ") ® (aq*; Dp-i = W @27)
_ Proof: (aq®*;q)n_x
(1-a)1-aq)(1-agq?)...(1—aq" (1 - aq™)( —aq"*")
- (1-aq®)(1 — aq™*t) ... tow = (1-ag*)(1 - ag*q)... (1
_ (@ Do - aq2k+n_k_1)
(@q™; @)oo , _ @)1~ ag®)(1 — ag**q)... (1 — ag"g*™)
® @, = @ou-a g @) L @2 @ D
f:
Pr_0101 . e gin _(-o(-ag..A- aq™ (1 —aq™)...(1 - aq™q*™)
(a Dn=~0-a'q J1-a DI¢! (@ Qax
—a gt g?).. (1 — a~lqt g Y) _ (@ n(aq™ O
= (1-ag'"™™MA-a'¢* ™M (@ @ar
Sea A maah - 0 i = D g ey
_ =)"1-a)(1-aq)...(1—aq"™") ok
N I Proof: (¢ )k = (1—q ™A —q™"q...(L—q"g"™)
" _EDFA-gM—g" ... A — g™
= @u(-a)q @) B D)k
q 2
1)k (k)—nk —DX(q; @)rre (1 — g F1) (1 — gn*+2), (1 — gg™!
© (@ Dy = (a; q)(na(_lqcll n) ;1 2 . (23) _ D Dk ktzk 1) J(1—-q )---(L—qq"")
T Dk q z @ Dner
Proof: (a; )p—x = (1 —a)(1—aq)(1—ag?)...(1 o (K)-nk
—aq" ) (1 —aq® k1) = (@ @n("1)7q7
(@ Dn—k

(-0 - ag)(1 —ag?)....(1 — ag" )1 - ag" ). (1 — ag"™Y)

(@ r(qa™; Qng™™

(= aq"M)(1 - ag™ =) (1 - ag™ ) ) (@g™ e =5 (2.9)
_ (@ Dn P L )
S €T S TRt o W (e i L) Proof: (aq™; D = Cgrr;q)..
1
(@hkg 7 _ @@ @ @ion _ @ Dsn
(@ ) (—qa-1yeqE)k @ D-n @D (@@ -n
- (@t
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(%; q)n (a; q)k(aq"’-; Q-n

n(n+1)
(=D"a"q" 2
X n(n+1)
(a5 (@ i (=D™(aq") g 2
- n(n+1) x q
—1)ng—n —,
(-D"a™q 2 (aq"'q)n

_ @ @)elqa™ )ng™
(@ 'q" % q)n
() (@ Qz2n = (@ ¢*)n(aq; ¢*)n (2.10)
Proof: (a;9).n = (1 — )1 —aq)(1 - ag?) ...(1 —ag®™1)
= (1-a(1-ag®>)(1—agq?)..(1—-aq?)x (1
—aq)(1-aqg®)(1-ag®) ..(1 —ag*"™*
= (@ 4*)n(aq; 4*)n
(K) (@%¢*)n = (@ On(=a; Pn - (2.11)
Proof: (a%q?), = (1 —a?)(1 —a?q?)...(1 — a?q*®~ D)
={1-a)(1-aqg)...(1 —aq" H}x
{1+ +aq)...(1—aq"™ 1)}
= (@ Pn(-a;Pn

1.2 The g- binomial theorem

The most fundamental summation formula in the theory of basic
hypergeometric series is the g- binomial theorem [3 13]

@ @n ,  (az9)-

19ola; —;q,2] = 2 @0 = G- Lzl < 1,]q|
<1 3.1
, _ (az9)
Proof: Let f(z) = N (3.2)

Since f(z) is an analytic function in |z| < 1, so we
have its taylor’s exp ansion in the form

f@) = ) A (3.3)
(zq) = n(:lozq:q)w _ (1-2) (az9)=
1@ = . - @G-
= (A-anf(zq) =1 -2)f(2) _
>1—az) ) Apz"q"=(1—-12) ) A,z" (34)

Equating the coefficients of z"on both, we get
Apq™ — adp_1q"t = Ay — Any
= A, (1—q" =411 —aq"™)

1—aq™!
>4, =(—X )a,., (35

1—q™
From (3.5) we find
1-a _l-aq ~ (1-a)(1—-aq)
Sy A T A C e TR

Pro ceeding in this way, we get
1-a)(1-aq)...(1—ag™? a;
Tt M o P L) M
1-q¢)(1—=gq*)...(1 —q") (4 Dn
From (3.3), f(0) = Ay andfrom (3.2) f(0) =1, so 4, =1
_ @D
(@ Dn

Putting this value in (3.6), we get A4,

Using this value in (3.3), we get
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_ o (@ Dn o= (az; @)
£ (4 (2 @)

f(@)

1.3 Some Special unsolved problem [13] obtained by using
section (1) and (2)
i -n. = g (—E>n _(;L)
@) (aq™; @n (a. q)n 7 9
Proof: (aq™™;q),

=(1-aqg ™1 —-aqg "q)...(1
—aq"q"?)(1 —aq"q" ")

- (L)) ()
(), (5

i —-k—-n. _ (q/a; q)n+k(—a)"q(721) —nk
(D (a5 on = @/ D

Proof: (ag™* ™ q), = (1 —aqg ¥ ™1 — ag7*"1)...x

(1 _ aq—k—n+n—2)(1 _ aq—k—n+n—1)

R e B s

qkn+—n(nz_1)
ny_
_ @@ D 0" _ (/0 Qi (—a)"q 2™

qn(n—l)/z -

(q/a; Ok (/@ Ok

(qal/z‘_qayz;q)n _1-ag®™
(iii) @ —al% g,
(qa'/?,—qa'/?;q),

(al/2,—al’?; q),
_ (=qa*)(1-g?a). (1-q"a*/*) (1+qa"/?)(1+q%a'/?). (1+g"a"/?)
T (1-at/)(A1-qal’?)..(1-q"1a2)(1+al/2)(1+qal/?)..(1+q"1al/?)

_ 1- qza)(l - q“a)... (1 — qZ(n—l)a)(l _ ana)
000 - ¢ 0700
1-aq®
1-a
(V) (& @) = (a¥/2,—aV/2, (aq)*/?, —(aq)¥/?)_

Proof: (a;q)e = (1 - a)(1 —aq)(1 - aq®)(1 - ag*)(1
—aq*)... to e
(1= @) (1~ (@) 1) (1 ~ (@ 2))2)...to =
{(1—a'?)(1— a'?q)... toeo}{(1 + a*/?)(1
+al/2q)... toee} x
{(1 = (a9)V?)(1 = (aq)/?q)... to==}{(1 + (aq)/?)(1
+ (aq)V/?q)... toee}
— (a1/2 _ al/Z(aq)l/Z _ (aq)1/z)m

1—a

Proof:

2. CONCLUSION

In the paper, we reviewed some identities of basic
hypergeometric series which are essential for entering the higher
g- series. Without those identities we can't enter to study the
Ramanujan's work. Those identities and g-binomial theorem are
proved by using the g-shifted factorial mentioned in (1.8). These
identities are necessary but not sufficient for such higher study.
Also, in the paper, with the help of those identities, some
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unsolved problem of Gasper and Rahman are solved. We hope
this paper will help to attract the beginners in this branch of
mathematics.
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