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ABSTRACT  
The properties like hydrogen bonding, partial atomic charges associated with atoms 
and intramolecular charge transfer characteristics of a drug are very crucial for its 
biological activity. In the paper, these electronic properties of antihypertensive drug 
methyldopa have been studied intensively, using Density Functional Theory (DFT).  
The simulated infrared (IR) and Raman spectra of monomer and dimer, Potential 
energy distribution (PED), Mullikan atomic charges and UV spectra have been 
analysed. In both IR and Raman spectra, the prominent stretching of the O-H group 
taking part in intermolecular hydrogen bonding was obtained at 2814.64 cm−1. 
Furthermore, the most negative Mulliken charge was found to be associated with 
nitrogen, N5 and onygen, O4 and the most positive with carbon atom C10 in 
momomer. The UV- Vis absorption spectra analysis has been performed in gaseous 
and solvent (EtOH) states. The present work precisely explains hydrogen bonding, 
reactive sites and possibility of intramolecular charge transfer. 

a
1. INTRODUCTIONS 

The structural and electronic properties of the molecule, which 
are important factors to determine the chemical and biological 
properties, have been investigated for a well-known drug, 
Methyldopa. Methyldopa, (S)-2-amino-3-(3,4-
dihydroxyphenyl)-2-methyl-propanoic acid is an 
antihypertensive drug that has been used since 1960 [1]. It is 
frequently used to treat preeclampsia and gestational 
hypertension [2] and preferred for breast-feeding women and 
often prescribed to heart, kidney, and diabetes patients [3,4]. 
Methyldopa is more soluble in dimethyl sulfoxide (DMSO) than 
in water [3]. 

Methyldopa, being one of the most important and popular 
medicines, has drawn considerable attention regarding its 
structural and chemical characteristics. In the last few years, a 
number of research projects have focused on its structural, 
thermal, chemical, and biological properties [6-10]. Noei et al. 
explored the different structure of molecules and their stability 
due to charge delocalisation in terms of natural bond orbitals 
(NBO) in different solvents [7]. The previous study shows that 
the molecule is thermodynamically stable and it exhibits 
significant non-linear optical properties [6,8]. The molecule 
shows charge-transfer characteristics with o-chloranil (O-ClN) 
[9]. Furthermore, Chaudhary et al. showed charge transfer due 
to excitation based on electron hole distribution [8]. 
 Previously, Prabakaran et al. performed an experimental 
vibrational study. However, the stretching of frequency of O-H 
taking part in intermolecular hydrogen bonding remained 
undetermined. Recently, Chaudhary et al. investigated the 
structural and chemical properties of the monomer and dimer 
of methyldopa [10]. However, the analysis of IR and Raman 
spectra in the monomeric and dimeric forms has not been 
performed yet. In addition to this, the effects of solvents on 
their electronic properties are still the subject of interest. Thus, 
our study is aimed at calculating these properties. As Density 
Functional Theory (DFT) is an effective method to analyse the 
structural and electronic properties of the molecules [11], the 

overall calculations have been performed using DFT at 
B3LYP/6-31G(d,p) level of theory. In this paper, IR and Raman 
spectra of monomer and dimer structures have been simulated 
and comparatively studied to find out the vibrational shifts of 
the functional groups taking part in hydrogen bonding. To 
reproduce the nucleophilic and electrophilic active sites, partial 
atomic charges associated with the molecule have been 
calculated. The study of UV-Vis spectra in solvent has been 
conducted theoretically to get insight into its electronic 
properties. The present work provides the important 
information required to understand the molecular reactivity of 
the molecule more precisely. Fig. 1 depicts the optimized 
structure of methyldopa dimer. 

2. COMPUTATIONAL AND THEORETICAL 
BACKGROUND 

The optimized structure of monomer and dimer of methyldopa 
were obtained based on previous work of Chaudhry et al. [10] 
and further calculations were performed using the Gaussian 09 
package [12]. The density functional theory (DFT) method [13] 
with exchange hybrid functional Becke’s 3-parameters (Local, 
nonlocal and Hartree-Fock) and correlation functional Lee–
Yang–Parr, B3LYP/6-31G(d,p), was employed for calculations 
[14-17]. GaussView 05 [18] was used to visualize and analyse 
the results of Gaussian output. For the vibrational analysis, 
potential energy distribution (PED) for each of the vibrational 
modes is obtained using Gar2PED software package [19]. The 
Raman intensities were calculated utilizing the given equation 
[20,21]: 
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డೕ

డఆ
 = Raman scattering cross-section,   

Sj = cattering activities, νj = estimated wavenumbers for jth 

normal mode ν0 =Wave number for the Raman-excited state 
h, c, and k represent the universal constants. More often, the 
calculated value of wave numbers is higher than the actual 
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ones. Thus, the calculated values are adjusted using 
factor, νobserved = (1.008700 − 0.0000163 × νcalculated 

[22]. Furthermore, Mulliken charges distribution in the 
 

 
Fig. 1:  Optimized structure of methyldopa

 
3. RESULTS AND DISCUSSIONS 

3.1 Vibrational modes 
Methyldopa molecule consists of 28 atoms, so
vibrational modes. The IR and Raman frequencies for
stable monomer and dimer are represented in Figs. 
respectively. The PED contributions of each of their v
modes are illustrated in Table 1. The different vibration 
[23] are explained below: 

O-H vibration 
Moreover, the stretching of O-H was calculated
3530–3645 cm−1 [24]. The simulated stretching
bonded O-H group in monomer were observed
cm−1 for O4H28, 3583.47 cm−1 for O3H27 and 3549.67 
for O1H26. In the dimer, the two hydroxyl group
O3H27 have almost the same frequency as they have in the
monomer. However, the stretching frequency of O1H26 was 
decreased to 2814.64 cm−1. Also, the frequency of hydrogen 
bonded O-H group of the carboxylic group lies in the range of 
3300–2500 cm−1 [24]. Hence, the red shift in the frequency of 
this hydroxyl group justifies the strong hydrogen
interaction in the dimer. 

NH2 vibration 
The amine group possesses asymmetric and symmetric 
stretching frequency bands. Its asymmetric stretching was 
observed at 3403.87 cm−1 and symmetric 
3330.73 cm−1 in the monomer. Similarly, in the dimer, the 
asymmetric stretching was obtained at 3399.56
symmetric at 3327.20 cm−1. All calculated freq
the specified range, 3490–3310 cm−1 [24]. The strong
vibration of NH2 in a plane was determined at 1642.94
monomer and 1620.34 cm−1 in dimer, respectively. 
cm−1, the waging of the monomer has the highest PED 
contribution.  

C-H vibration 
The calculated stretching frequency of C-H associated with 
the ring were obtained at 3071.16, 3065.59, 3030.41
the monomer and at 3068.16, 3019.16, 2994.82
dimer structure. These calculated frequencies
within the range, 3100-3000 cm−1 [25, 26]. Furthermore,
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adjusted using the WLS 
calculated ) νcalculated 

Furthermore, Mulliken charges distribution in the 

molecule was visualized using GaussView
integral equation formalism-polarized continuum (IEF
model was used to analyze UV-Vis spectra. 

 

Optimized structure of methyldopa dimer at B3LYP/6-311++G (d,p) [10]. 

consists of 28 atoms, so it exhibits 78 
IR and Raman frequencies for the most 

in Figs. 2 and 3 
contributions of each of their vibrational 

vibration modes 

H was calculated in between 
simulated stretching of the non-

group in monomer were observed at 3636.18 
for O3H27 and 3549.67 cm−1 

two hydroxyl groups O4H28 and 
as they have in the 

However, the stretching frequency of O1H26 was 
. Also, the frequency of hydrogen 

in the range of 
. Hence, the red shift in the frequency of 

justifies the strong hydrogen-bond 

mine group possesses asymmetric and symmetric 
metric stretching was 

and symmetric stretching at 
in the dimer, the 

obtained at 3399.56 cm−1 and 
frequencies lie in 

The strong bending 
determined at 1642.94 cm−1 in 

, respectively. At 874.42 
, the waging of the monomer has the highest PED 

associated with 
at 3071.16, 3065.59, 3030.41 cm−1 for 

d at 3068.16, 3019.16, 2994.82 cm−1 for the 
ies of C-H are 

Furthermore, it’s in 

plane bending vibration were obtained in the wide 
1486.0-1127.89 cm−1 and out-of-plane bending in 918.49
810.00 cm−1. 
The asymmetric stretching of CH2 was calculated at 2992.55
cm−1 and symmetric stretching at 2942.90 
monomer. Similarly, its symmetric stretching in di
obtained at 2945.81 cm−1. These all calculated frequency 
bands fall under the given range, that is
asymmetric and 2900-2800 cm−1 for symmetric
addition to this, other vibrations occurred 
1464.65 cm−1 (deformation), 863.90 cm
cm−1 (waging) and 1259.53 cm−1 (scissoring)
The stretching of CH3 was estimated at 2990.61
(asymmetric), and at 2924.10 cm−1

monomer, and 2994.82 cm−1 (asymmetric) and 2921.27 
(symmetric) in the dimer. The typical range of CH
is 3000-2905 cm−1 for asymmetric vibrations
cm−1 for symmetric vibrations [27,28].  
CH3 with very high contribution PED contribution
was calculated at 1393.39 and its rocking were generally 
obtained below 1127.89 cm−1. 

C=O, C-C vibration 
The calculated stretching frequency band for C=O in 
monomer was observed at 1782.40 cm
range, 1870-1550 cm−1 [29]. But, in dimer structure, 
frequency was observed at 1723.86 
frequency of the carbonyl group, indicates that oxygen 
involved in the hydrogen bonding. 
The C-C stretching frequencies were 
monomer and dimer. In the monomer, prominent stretching 
was discovered between 1644.87 cm
Generally, the stretching frequency bands for C
between 1650 and 1100 cm−1 [30]. 

Ring vibration 
The ring exhibited a variety of vibrations, includingpuckering, 
torsional vibration, and trigonal deformation. The 
considerable puckering of the Ring R was detected at 698.03 
cm−1 and its asymmetric torsional vibration
very low frequency, 156.03 cm−1.. 
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Fig. 2. Simulated IR spectra of methyldopa. 

 
Fig. 3. Simulated Raman spectra of methyldopa. 

 
Table 1. Potential energy distribution (PED) associated with vibrational frequency of methyldopa. 

Unscaled 
frequency 

Scaled 
frequency 

IR 
intensity 

Raman  
activity 

PED distribution (≥ 5%) 

3843.54 3636.18 69.34 138.30 ν(O4H28)(100) 
3783.94 3583.47 88.34 84.77 ν(O3H27)(100) 
3745.78 3549.67 48.49 128.48 ν(O1H26)(100) 
3581.83 3403.87 2.31 48.09 νa(NH2)(100) 
3499.95 3330.73 2.01 130.34 νs(NH2)(100) 
3211.32 3071.16 1.92 76.14 R[ν(CH)](95) 
3205.60 3065.99 2.01 57.86 R[ν(CH)](98) 
3166.28 3030.41 19.00 98.02 R[ν(CH)](96) 
3149.67 3015.37 12.75 63.38 ν(C9H20)(99) 
3124.50 2992.55 5.61 31.26 νa(CH2)(98) 
3122.36 2990.61 20.58 71.92 νa(CH3)(99) 
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3069.80 2942.90 22.49 94.36 νs(CH2)(98) 
3049.12 2924.10 21.37 113.73 νs(CH3)(99) 
1820.59 1782.40 181.88 2.75 ν (C=O)(80)+δin(C10H26)( 6) 
1676.08 1644.87 7.92 32.25 R[ν(CC)(45)+δa(10)] 
1674.06 1642.94 41.57 17.45 δin(NH2)(87) 
1656.47 1626.16 48.07 7.77 R[ν(CC)(56)+ δa′(9)] 
1561.47 1535.31 168.99 1.16 R[ν(CC)(36)+δin(CH)(36)+ν(C15O)( 9)+ν(C13O)(6)] 
1514.41 1490.20 5.32 10.28 [δa(45)+δa′(20)+ρ(5)](CH3) 
1510.07 1486.04 2.81 9.14 [δa(18)+δa′(6)](CH3)+R[δin(C12H)(11)+ν(CC)](30)]+δ(O3H)(11) 
1502.99 1479.24 6.99 18.44 [δa′(57)+δa(23)+ρ′(6)](CH3)+δ(CH2)(9) 
1487.79 1464.65 3.58 4.33 δ(CH2)(85)+δa′(CH3)( 6) 
1413.67 1393.39 11.55 1.22 δ(CH3)(87) 
1403.66 1383.76 19.06 5.23 R[ν(CC)(60)]+δ(O3H)(9)+ δ(CH2)(10) 
1369.85 1351.18 10.89 14.68 ω(CH2)(40)+ρ(NH2)(10)+ν(C6C9)( 6)+δ(C8C6C7)(6) 
1365.08 1346.58 52.39 1.20 δ(C8C6C7)(10)+δ(O4H)(9)+ν(C10O)(8)+R[δin(CH)(15)]+ν(C6C10)(7) 
1359.85 1341.54 96.07 7.07 δ(O3H)(16)+R[δin(CH)](19)+δ(O4H)(8)+δ(C8C6C7)(8)+ν(C10O)(6)+ω(CH2)(6) 
1328.81 1311.59 189.62 14.22 R[ν(CC)(33)+ δin(CH)(7)+ν(C7C8)(6)+ ν(C13O)(21)+ν(C15O)(6)]+ ρ(NH2)(8) 
1322.28 1305.28 9.79 1.72 ρ(NH2)(28)+ω(CH2)(19)+δ(C6C9N)(8)+δ′(CH3)(6) 
1298.31 1282.13 33.22 0.62 R[ν(C15O)(17)+δtrig(15)+δin(C12H)(17)+ν(C13O)(12)]+[γ(9)+ω(7)](CH2)+δ(O3H)(8) 
1274.93 1259.53 15.97 7.17 γ(CH2)(24)+ν (N5C6)(15) 
1227.59 1213.71 13.78 14.68 δ(C8C6C7)(10)+ν (N5C6)(10)+ν(C6C7)(9)+ν (C6C9)(8)+ω(CH2)(7)+ρ(NH2)(6) 
1219.71 1206.07 49.87 2.63 δ(O3H)(30)+R[ν(CC)(16)+δin(CH)(14)+ν(C15O)(6)]+δ(O4H)(5) 
1187.41 1174.76 65.78 7.03 δ(O4H)(22)+R[δin(CH)(22)+ν(C8C12)(8)]+ν(C7C8)(18) 
1174.20 1161.94 16.40 5.20 R[δin(CH)(36)+ν(CC)(19)]+δ(O4H)(13)+ν(C7C8)(9) 
1168.26 1156.18 148.73 3.97 δ(C8C6C7)(23)+ν(C10O)(22)+γ(CH2)(14)+ν(N5C6)(8) 
1139.13 1127.89 144.88 4.82 δ(O4H)(15)+ν(C10O)(11) –R[δin(CH)(10)+δtrig(8)+ν(C15O)(7)]+ρ(CH3)(8) 
1120.54 1109.82 100.27 2.96 ρ(CH3)(21)+ν(C10O)(11)+γ(CH2)(9)+δ(O4H)(6)+ν(C8C11)(6)+R[δtrig](6) 
1049.63 1040.80 8.41 4.27 ν(C6C9)(25)+ρ′(CH3)(22)+δ(NH2)(19) 
992.71 985.28 25.16 6.16 ρ′(CH3)(15)+ν(C6C7)(12)+ν(C6C9)(11)+R[ν(CC)](7)+ν(C7C8)(6)+ω(NH2)(6) 
988.81 981.48 13.18 1.15 ρ(CH2)(26)+ρ′(CH3)(17)+ρ(CH3)(11)+R[δtrig]( 6) 
945.22 938.88 5.43 3.12 ω(NH2)(17)+ρ(CH2)(13)+ρ(CH3)(10)+ν(C6C9)(8)+R[ν(C8C12)(7)+δtrig(7)] 
924.38 918.49 0.98 1.73 R[oop(CH)(74)+τa′ ](6) 
911.56 905.95 48.85 6.63 R[oop(CH)](35)+puck(6)]+ω(NH2)(20)+ν(C6C7)(12) 
879.37 874.42 72.00 2.68 R[oop(CH)](36)+ω(NH2)(26)+ν(N5C6)(14) 
868.64 863.90 2.33 2.80 ν (N5C6)(18)+ρ(CH2)(16)+R[oop(CH)](14)+ν(C6C7)(12)+ν(C6C10)(9)+ ρ(CH3)(6) 
813.71 810.00 19.35 5.21 R[oop(CH)](67)+R[τa]( 8) 
799.84 796.37 25.84 18.80 R[ν(C15O)(23)+ν(CC)(28)+δtrig(9)+δa(7)] 
783.91 780.71 31.84 2.08 oop(C10O)(38)+τ(C10O)(13)+ν(C6C9)(11)+R[oop(C14H)](6) 
760.38 757.57 20.88 6.34 R[δtrig(16)+δa′(10)+ν(C7C8)(10)+puck(6)]+oop(C10O)(10) 
737.43 734.98 14.29 7.90 ν(C6C10)(19)+δin(C10O)(14)+R[puck(13)+oop(C8C7)(7)]+ν(C10O)(9) 
699.93 698.03 4.73 2.30 R[puck(56)+oop(C13O)(14)+oop(C15O)(14)+oop(C8C7)(5)] 
656.53 655.22 61.93 3.19 τ(C10O)(28)+R[oop(C13O)(16)+τa(10)+oop(C15O)(10)+oop(C8C7)(6)] 
630.29 629.30 48.46 2.38 τ(C10O)(26)+R[τa(18)+oop(C13O)(13)+oop(C8C7)(13)+oop(C15O)(8)] 
596.02 595.41 4.02 6.38 R[δ′a](38)+δin(C15O)(21)+ν(CC)(9)+δin(C13O)(6)+ν(C13O)(6)] 
568.84 568.51 25.51 2.34 δin(C10O)(22)+δa(C6C9N)(12)+ν(C6C10)(9)+δ(C6C10O)(9)+R[δa](6)+ ρ′(CH3)(6) 
552.08 551.91 16.19 1.87 R[δa(12)+puck(9)+δin(C13O)(8)+τa(7)]+ρ(C6C9N)(9) 
526.41 526.47 13.04 1.71 (C6C10O)(17)+δ(C6C9N)(14)+δin(C10O)(12)+δa′(C6C9N)(10)+R[puck(8)] 

Types of vibration: ν(stretching), νa (asymmetric stretching), νs(symmetric stretching), δ (deformation and bending), oop(out of plane 
bending), ω(wagging), γ(twisting), ρ(rocking), τ(torsion). 
 

3.2 Mulliken Charge 
Atomic charges affect the electronic properties, such as non-
linear optical properties and chemical and biological 
properties of the molecule [31,32]. In addition, it also 
influences the electronic structure, molecular reactivity, 
molecular electrostatic potential, etc. [44]. The Mulliken 
charge associated with each of the atoms is illustrated as 
shown in Fig. 4. All hydrogen atoms exhibit the positive 
charges, and all the oxygen and nitrogen atoms exhibit the 
negative charges. Some carbon exhibits the positive charge, 

and some of the carbons exhibit the negative charge. The 
highest positive charge is associated with carbon atoms C10 
and also, the higher negative charges are mainly associated 
with atoms O4 and N5. The negativity of atom O4 and N5 are 
also well demonstrated by molecular electrostatic potential 
(MEP) map in the literature [10].  The positive atoms behave 
as an electrophilic sites and negative atoms as nucleophilic 
sites [10, 44].  Thus, these atoms have a crucial role for the 
non-covalent interactions. 
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Fig. 4.   Mulliken charges associated with each atoms of methyldopa. 

                Table 2. Mulliken charges of non-hydrogen atoms of methyldopa calculated at B3LYP/6-31G(d,p) level of theory. 

Monomer 
Atom Gaseous state Water |e| Methanol |e| EtOH |e| 
 O1  −0.4947 −0.4980 −0.4980 −0.4980 
 O2  −0.4777 −0.5050 −0.5042 −0.5038 
 O3  −0.5699 −0.5873 −0.5868 −0.5865 
 O4  −0.5957 −0.6021 −0.6019 −0.6018 
 N5  −0.5911 −0.6193 −0.6184 −0.6179 
 C6  0.0691 0.0696 0.0696 0.0696 
 C7  −0.2145 −0.2170 −0.2169 −0.217 
 C8  0.0770 0.0772 0.0772 0.0772 
 C9  −0.3054 −0.3093 −0.3093 −0.3093 
 C10  0.5933 0.6049 0.6045 0.6043 
 C11  −0.1565 −0.1656 −0.1653 −0.1652 
 C12  −0.1410 −0.1505 −0.1502 −0.1501 
 C13  0.3165 0.3070 0.3073 0.3074 
 C14  −0.1299 −0.1416 −0.1414 −0.1412 
 C15  0.2869 0.2848 0.2849 0.2850 

Dimer (first molecule) 
O1 −0.51149 −0.51602 −0.51591 −0.51585 
O2 −0.53638 

−0.5458 
72 

−0.54553 −0.54538 
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O3 −0.56245 −0.58205 −0.58148 −0.58118 
O4 −0.61617 −0.61831 −0.61835 −0.61836 
N5 −0.58676 −0.61375 −0.61284 −0.61237 
C6 0.06329 0.06348 0.06348 0.06348 
C7 −0.21135 −0.2132 −0.21317 −0.21315 
C8 0.08841 0.08753 0.08753 0.08753 
C9 −0.30834 −0.31138 −0.31134 −0.31132 

C10 0.6186 0.6279 0.62763 0.62749 
C11 −0.16531 −0.17131 −0.17112 −0.17103 
C12 −0.13475 −0.14843 −0.14786 −0.14758 
C13 0.3304 0.32474 0.32485 0.32491 
C14 −0.10457 −0.11538 −0.11492 −0.11469 
C15 0.24254 0.25723 0.25669 0.25642 

 
3.3  UV-Vis Spectra 

The electron transition from the highest occupied molecular 
orbital (HOMO) to the lowest unoccupied molecular orbital 
(LUMO) is the main factor that determines the accessibility of 
chemical reactions, and the energy gap indicates the feasibility 
of electron transfer [34,35].  In the previous paper [10], the 
chemical reactivity of the molecule on the basis of the HOMO-
LUMO gap has already been discussed. However, the 
theoretical treatment of the UV-Vis characteristic of the in 
dimer has not been discussed yet. 
The electronic absorption in the bulk of different solvents, TD-
DFT with integral equation formalism-polarized continuum 
(IEF-PCM) model at the same level of theory, has been used 

for the computation. Fig. 5 depicts the UV-Vis spectra of 
methyldopa in a gaseous state and solvent (ethanol). The 
transitions of electrons in different solvents with their 
respective excitation energy (ΔE), absorption wavelength (λ) 
and oscillator strength (f) have been listed in Table 3. In the 
gaseous phase and in solvent (EtOH), two transition peaks 
were observed. In gaseous phase, transition peak corresponds 
to the wavelength 248.82 and 182.91nm (monomer); and 
247.34 and 185.78 (dimer).  The absorption in solvent, ethanol 
(EtOH) were observed at 249. 4 and 185.78 in monomer and 
246.73 and 183.86 nm in dimer. These values were found to 
be closer to the experimental ones (279, 202 nm) in EtOH [6].

                  Table 3. Electronic transition properties of methyldopa in the gaseous phase and in solvent. 

Gas phase and solvent (EtOH) Absorption peaks 
(λ)nm 

Oscillator 
strength (f ) 

Excitation energy 
(ΔE) eV 

Excitation state 

Gas phase 248.82 0.0444 4.9828 HOMO→LUMO 

182.91 0.6941 6.7784 HOMO−2 →LUMO+2 

EtOH 249. 4  0.0591   4.9709 HOMO→LUMO 

185.78  0.7655  6.6736 HOMO−2 →LUMO+2 
Dimer 

Gas phase 247.34 0.0638 5.0127 HOMO−1→LUMO 
182.03 0.4951 6.8112 HOMO→LUMO+8 

EtOH 246.73 0.0918   5.0252 HOMO−1 →LUMO 
 183.86 1.1861   6.7434 HOMO−5 →LUMO+4 
 

 

 

Fig. 5:  Simulated UV-Vis absorption spectra for methyldopa in the gaseous phase and in solvent (ethanol). 
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4.  CONCLUSION 

The IR and Raman spectra, atomic charge and UV-Vis 
absorption spectra of methyldopa have been analysed in the 
present work. From IR and Raman analysis, functional group, O-
H has been justified to from intermolecular hydrogen bonding. 
Due to the hydrogen bonding, the red shift occures in the 
stretching frequency of the O-H group. Thus, the stretching 
frequency of H-bonded O-H group was explored at 2814.64 
cm−1. The Mulliken charge for each of the atoms was 
calculated. Carbon atoms C10 exhibit the highest positive 
charge and atoms like O4, N5 exhibit the higher negative 
charge than others showing higher electrophilic and 
nucleophilic behavior, respectively. The UV-Vis absorption 
performed in gaseous phase and in the solvent shows the 
electronic transition. The intense transition peaks were 
calculated at 248.82 nm (monomer) and 247.34 nm in (dimer) 
in the gaseous state, whereas they were found at 249. 4 
nm(monomer) and 246.73 nm (dimer) in EtOH. Ultimately, the 
present work provides fundamental and insightful knowledge 
regarding the intermolecular hydrogen bonding, intramolecular 
charge-transfer and possible reactive sites which are important 
for interaction with the target. 
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