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Abstract  

The susceptibility analysis is common for the study of landslides in the Himalayas, considering  

different invariant causative factors. This study’s objective is to examine changes in landslide  

susceptibility within the Siddhababa area by conducting analyses across various time intervals. This  

area in western Nepal is prone to landslides due to hilly terrain, steep slopes, complex geology,  

diverse vegetation cover, and extreme weather conditions. This study examines 281 landslides in an  

area of approximately 257.38 km2, considering 12 causative factors, including three variable factors  

such as land use, distance to the road, and precipitation, for three different study periods: 2005-2010,  

2010-2015, and 2015-2020. For the three study periods, susceptibility analysis, validation, and  

mapping were performed to prepare susceptibility maps of the study area. The maps were divided  

into five levels, ranging from very low to very high. The findings show that the high and very high  

susceptibility levels have increased from 13% to 41% over time, respectively. The changes in the  

likelihood of landslides are due to both invariant and variable factors such as human activities and  

climate playing a significant role in altering the susceptibility of the area over time. It is, therefore,  

essential to comprehend these factors to develop appropriate strategies for mitigating and adapting  

to the risks posed by landslides and other natural hazards.  
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1. Introduction  
Landslides occur when there is an interference in any terrestrial environment by tectonic [1]hazard 

potential, and topographic evolution. We assess how landslides shape terrain in response to a wave of 

uplifttraversing the northern California Coast Ranges (United States, climatic [2] and/or human [3] 

activities. These activities that occurred in the changing climate are studied to pose a direct threat to the 

frequency occurrence and intensity of landslides, magnifying the risk globally. The Himalayas are 

susceptible to landslides because of their topography, geology, geospatial location, and climatic 

conditions [4]to derive a landslide hazard map of the North-West marginal hills of the Achham. 

Thematic maps representing various factors that are related to landslide activity were generated using 

field data and GIS techniques. Landslide events of the old landslides were used to assess the Bayesian 

probability of landslides in each cell unit with respect to the causative factors. Results: The analysis 

suggests that geomorphological and human-related factors play significant roles in determining the 

probability value. The hazard map prepared with five hazard classes viz. Very high, High, Moderate, 

Low and Very Low was used to determine the location of prime causative factors responsible for 

instability. Spatial distribution of causative factor was correlated with the mechanism and scale of 

failure. For the mitigation of such shallow-seated failure, bioengineering techniques (i.e. grass 

plantation, shrubs plantation, tree plantation along with small scale civil engineering structures. The 

situation is particularly severe in the central Himalayan arc. The region’s climate, including precipitation, 

is heavily influenced by monsoon rainfall, with approximately 80% of the rainfall occurring within 

around 100 days of the monsoon season [5]. The changing climate further intensifies the dynamic nature 

of the area, increasing its susceptibility to landslides and rainfall-induced disasters. Additionally, there 

are anthropogenic factors such as changes in land use and road construction that significantly impact 

the likelihood of landslides in the region.  
 
Nepal, a country in the Himalayas with a varied topography; 83% of the country is covered by 
mountains, with the remaining 17% located on the northern edge of the alluvial plains, is prone to multi-
hazards [5]. According to Shrestha 2019, Nepal experiences hundreds of destructive landslides and 
roadside slope collapses every year, which result in enormous losses in lives and property. This is due to 
the country’s vast mountainous terrain, which is mostly highly elevated, rugged, and fragile, along with 
annual monsoonal heavy precipitations and other dynamic geological processes [6]. In the Nepal 
Himalaya, rainfall-induced landslides cause severe effects on people, property, infrastructure, and the 
environment, especially during the monsoon season. 
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At present, many national highways in Nepal are sporadically facing rock-fall and landslide events, causing fatal 

accidents at an alarming rate. Siddhartha Highway is one of the highways in Nepal, where tragic rock-fall 

occurrences have a long history of a significant number of victims [7]. Similarly, the frequent occurrence of 

landslides around the Siddhababa area during the monsoon causes obstruction of the road, making it  difficult to 

pass by for local walkers, travelers, and tourists. This not only created a noxious environment for travelers, but 

also invited a great deal of damage to nearby livelihoods and landscapes. Almost every year, accidents and 

casualties of people walking, working, or driving on this part of the highway are reported. This raises a series of 

concerns concerning the environment and community under threat from landslide hazards in the area that are 

poorly understood [8]. Moreover, Nepal has long been experiencing an upsurge in catastrophic landslides, despite 

very few acknowledgments, particularly in the western part of the country.  

According to the IPCC (2007), climate change is characterized as a long-term change in temperature and weather 

patterns [9]. Climate change includes large-scale changes in weather patterns that come from both global warming 

and human-caused greenhouse gas emissions. Due to the small number of scientific research undertaken in this 

region, including Nepal, the IPCC’s Fourth Assessment Report identified this region as a “white spot” [9]. From 

1971 to 2005, the average temperature in Nepal rose at a steady and continuous pace of 0.05℃ per year, according to 

the Department of Hydrology and Meteorology (DHM). Between 1975 and 2005, the maximum temperature rose 

by 0.06℃ each year, while the lowest temperature increased by 0.03℃ per year  

[10]. Similarly, Nepal’s annual average rainfall is increasing by 13 mm, although the number of wet days is 

falling by 0.8 days every year. A study of monsoon rainfall from 1971 to 2005 found a linear increasing trend 

of roughly 2.08 mm/year with significant inter annual variance [11].  

Concern over the potential impact of climate change on landslides has risen in recent years. Changes in 

precipitation patterns, increased intensity and frequency of extreme weather events, and changes in soil moisture 

content have been studied to analyze the occurrence and magnitude of landslides. [12] used well-established 

techniques and models to investigate the possible impact of climate change on landslide occurrence and hazard in 

Central Italy. The study attempted to establish a cause-and-effect relationship between climate  
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change forecasts and landslide occurrence by building synthetic downscaled rainfall fields, defining rainfall 

thresholds, and modeling slope stability caused by rainfall events. It is crucial to note that the links between 

climate change and landslides are complicated and still not understood. While some research has shown a 

connection between landslides and climate change, others have found no conclusive evidence of one [13. To 

fully understand the effects of climate change on landslides and to create practical mitigation methods, the 

subject requires a comprehensive study.  

In numerous studies conducted over the past few decades, land use has consistently been considered a  

significant causative factor in landslide susceptibility. However, despite its recognized importance, the  

exploration of land use changes in landslide susceptibility analysis has been limited, leaving a significant  

potential for future research [14]. While, the rapid expansion of urbanization has led to the conversion of  

substantial areas of forested and cultivable land into urban fringes. This transformation, combined with the  

challenging terrain and complex topography, has significantly increased the occurrence of landslides caused  

by human interventions [15]. Moreover, recognizing the importance of land use in landslide assessment  

requires examining the influence of human activities on slopes, particularly agricultural and forestry  

practices [14]. These activities are further influenced by climate change, emphasizing the need for effec tive  

management strategies to minimize landslide susceptibility [13. However, limiting landslide assessments to  

past conditions provides a narrow perspective since human activities significantly alter hillside conditions  

[4], [16]. Therefore, incorporating changing land use scenarios into landslide susceptibility analysis can yield  

more practical outcomes. This approach assists public administrators in long-term land use management  

and reduces the risk of landslide disasters.  

Landslide susceptibility analysis is commonly conducted in the Himalayas, taking into account various 

invariant factors, but no previous studies have considered the variable parameters and their effects. This 

research aims to bridge this gap by conducting a landslide susceptibility analysis that incorporates variable 

factors and evaluates their impacts. The study also highlights the impact of climate change on landslide 

susceptibility in the study region.  

 

1. Materials and methods  
 

1.1 Study Area  

The study area lies in the Palpa and Rupandehi districts of the Lumbini Zone of western Nepal in Province  

5. The total coverage of the study region is 257.38 km2. It extends within latitudes 27°40’12” N to 27°49’48” N and 

longitudes 83°20’24” E to 83°35’24” E (Fig. 1). It is bounded by Butwal Nagarpalika and Tinau Gaupalika.  

It touches the east-west highway stretch and the Siddhartha Highway. The study area lies in the middle of 

the mountainous region of western Nepal. The elevation of the study area varies from 55 to 1647 m above 

mean sea level (masl). The Siddhartha Highway that falls under the study area follows the main watercourse 

of Tinau Khola, bounded by the Siwalik range in the south. The study area has highly rough terrain with 

steep slopes and a deeply incised valley of Tinau Khola. This area bounded by the Tinau watershed is 

tectonically active and geomorphologically very unstable as well because of its location lying in between the 

main boundary thrust (MBT) and the central boundary thrust (CBT) [7].  
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Fig. 1 Location of the study area  

The study area falls under two climatic zones: the sub-tropical zone and the warm temperate humid zone.  

Since our study area is the administration boundary between Palpa and Butwal, the data used in this study  

are taken from two stations: Butwal and Tansen. Precipitation data were collected from the Department of  

Hydrology and Meteorology (DHM). Details about the hydrological and meteorological stations are presented  

in Table 1. 
 

Station 
 

No. 

 
 
 

Location 

 

Co-ordinate  

Latitude  Longitude 

 

Elevation Measuring station type 
 

(m)  

702 

703 

Tansen 

Butwal 

27° 51’ 36” 

27° 41’ 24” 

83° 32’ 24” 

83° 27’ 36” 

1187 

205 

Climatology Manned 

Climatology Manned 

Data and Sources  

For this study, different sets of data, such as DEM, precipitation, land cover, lithology, and relative relief, are  

required, which are obtained from various organizations. A 12.5 x 12.5 m resolution Digital Elevation Model  

(DEM) was derived from the USGS (United States Geological Survey, https://earthexplorer.usgs. gov/). A Digital  

Elevation Model (DEM) is a three-dimensional or digital model of a terrain’s surface created using elevation data. 

The elevations of the Earth’s surface, as well as the location of natural and associated features, are determined 

using DEM data. SRTM and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEMs 

with a resolution of 12.5 m are widely available in Nepal. The use of ASTER 12.5 m DEM in this study was 

accompanied by a series of errors while processing in ArcMap, which made the  

selection of SRTM DEM more reliable.  
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1.2 Landslide Susceptibility Analysis  

Fig. 2 presents a framework that was developed specifically for this investigation, which uses indicators to 

assess various causal factors. These factors were selected based on a literature review, their relevance to the 

study area, and the availability of data.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Flow chart showing data inputs to produce landslide susceptibility maps  

The weighting of the selected conditioning factors is part of the landslide susceptibility mapping procedure.  

Landslide susceptibility analysis weight calculation can be done using a variety of statistical methods. The  

frequency ratio approach is utilized in this study to identify the link between landslide location and factors in the  

study area. It is based on the observed relationships between landslide distribution and each landslide-related  

factor[17]Malaysia using Geographic Information System (GIS. To obtain the Landslide Susceptibility  

Index (LSI), the ratings of the factors were summed as:  
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where, FRi  = Frequency Ratio of factors i.  

To determine the probabilistic link between dependent and independent variables, including multi-classified  

maps, a FR model can be used as a simplified geospatial assessment tool [18]Janghung and Boeun, Korea,  

using the geographic information system (GIS. The FR approach is easy to use, and the outcomes are simple  

to comprehend[19], [20]processed, and constructed into a spatial database using GIS and image processing.  

The  factors  chosen  that  influence  landslide  occurrence  were:  topographic  slope,  topographic  aspect,  

topographic curvature and distance from drainage, all from the topographic database; lithology and distance  

from lineament, taken from the geologic database; land use from Landsat Thermatic Mapper (TM. The FR is  

defined as the ratio of the region where landslides have occurred to the overall study area, and the ratio of  

the  probability  of  a  landslide  occurrence  to  the  chance  of  nonoccurrence  for  a  particular  attribute  

[19]processed, and constructed into a spatial database using GIS and image processing. The factors chosen  

that influence landslide occurrence were: topographic slope, topographic aspect, topographic curvature and  

distance from drainage, all from the topographic database; lithology and distance from lineament, taken  

from the geologic database; land use from Landsat Thermatic Mapper (TM. To compute the FR, the area  

ratio of occurrence of landslides to nonoccurrence was determined for each class, followed by an area ratio  

of the class to the total area.  
 
 

Where, NP = Number of pixels in each factor class i  

N = Number of all pixels in the whole study area  

NlP = Number of landslide pixels in each factor class i  

Nl = Number of all landslide pixels in the whole study area  

Using the above equation, frequency ratio for each conditioning factor is calculated. After that, the relative 

frequency (RF) is calculated to normalize the FR and its value ranges between 0 and 1.  

The mathematical expression for RF calculation is:  
 
 

Where FRi = Frequency ratio of each class in conditioning factor  

FR = Total sum of Frequency ratio of each class in the conditioning factor  

Relative frequency has the drawback of weighing all conditioning factors equally [21]. To solve this flaw, the 

prediction rate (PR) is determined for all factors, taking into account their mutual interaction. For the 

calculation, the following equation was used.  

 

 

Finally, a landslide susceptibility map (LSM) was created in ArcGIS 10.8 using the raster calculator by 

combining conditioning factors classed according to their RF values and multiplying each value by its 

appropriate PR value.  

 

After classifying the landslide susceptibility index value into five ranges very low, low, moderate, high, and 

very high, a landslide susceptibility map was produced. The susceptibility map was validated with a typical 

area under curve by superimposing these maps with landslide inventory maps.  
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2. Result and Discussions  

1.1 Landslide Inventory Map  

With the processing of image, data inputs and a thorough study, a landslide inventory map for the study area that 

lies under Palpa and Rupandehi district was prepared as presented in Fig. 3. Visible scars from landslides were 

first outlined using Google Earth for landslide inventory mapping into GIS. To create a landslide inventory map, 

news coverage from the Siddhababa area were also taken into account along with satellite imagery. The map 

indicates the location of historical landslide events, denoted by red dots. A total of  

281 landslides were identified, 66 in SP-I, 76 in SP-II, and 139 in SP-III.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Landslide Inventory Maps  
 

1.2 Causative Factors  

The total of 12 factors used in this study for landslide susceptibility mapping. These factors can be categorized into 

five groups: Topographic, Geomorphological, Hydrological, Anthropogenic and Climatic Factors. The first three 

groups are considered as factors of time invariance, while the latter two are considered variable  

factors.  

1.2.1  Topographic Factors  

Topographical factors such as slope, aspect, curvature, and relative relief are prepared using the spatial 

analyst tool in ArcGIS 10.8w from the DEM of the study area.  
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Fig. 4 Factor Maps : (a) Slope , (b) Aspect, (c) Curvature , (d) DEM , (e) Geology, (f) Lineament density, (g)  
Distance to Stream , (h) SPI, (i) TWI , ( j1) LULC: SP-I , (j2) SP-II, (j3) SP-III ; (k1) Road buffer: SP-I, (k2) SP-II,  

(k3) SP-III,  
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Slope  

The slope values ranges from 0 to 90 degrees and divided into eight categories, namely 0-15˚, 15˚-20˚, 20˚-25˚, 

25˚-30˚, 30˚-40˚, 40˚-50˚, 50˚-60˚, and 60˚-76.70˚ (Fig. 4a). The slope FR value revealed that the areas with the 

highest susceptibility were those with slopes of 50-60 degrees for SP-I and SP-II, while for SP-III, it was 40-50 

degrees. The study results imply that the susceptibility to landslides increases up to a certain value as the 

slope gradient rises due to the changes in slope material and its characteristics.  

 

Aspect  

The slope aspect was classified into nine classes, including north, northeast, east, southeast, south, southwest,  

west, northwest, and North (Fig. 4b). According to the results, the slopes facing the southeast, south and  

southwest had higher FR values for the studied periods. Various factors, such as exposure to solar radiation,  

soil properties, drainage, and vegetation cover on slopes, could contribute to this pattern.  

 

Curvature  

The curvature map that was prepared was categorized into three groups: Concave (< -0.05) Flat (0.05 -0.05), and 

Convex (> 0.05) (Fig. 4c). When it comes to curvature, the FR values of Concave (>-0.05) and Convex (>0.05) 

surfaces are higher than those of Flat surfaces. This is because concave and convex surfaces have steep slopes that 

can cause water concentration and soil movement, making them more susceptible to landslides [22] Conversely, 

flat surfaces have lower slopes and are less likely to experience landslides. Additionally, concave and convex 

surfaces can create small topographic depressions that can accumulate water and increase soil  

saturation, thereby raising the risk of landslides [22].  

 

Relative relief  

The relative relief was divided into eight classes: 55-200 m, 200 - 400 m, 400 - 600 m, 600-800 m, 800-1000 m,  

1000-1200 m, 1200-1400 m, 1400-1647 m (Fig. 4d). In case of relative relief, the 1400-1647 m class has a higher  

FR value for the studied period. This may be due to the presence of steep slopes and an increased risk of  

landslides in such areas. Furthermore, areas with high relief are more likely to undergo changes in soil type,  

lithology, and vegetation cover, which can make them more susceptible to landslides. Furthermore, high- 

relief areas tend to have higher levels of rainfall and water infiltration, which can lead to soil saturation and  

landslides [22].  

3.2.2 Geomorphological Factors  
 

Geology  

The ICIMOD digitized map (https://rds.icimod.org/) using the Soil Terrain Database (SOTER, 2009) and the  

geology map of Nepal from the Department of Mines and Geology (DMG) of Nepal (https://www.dmgnepal.  

gov.np/map), which was processed in ArcGIS 10.8. The map identified several geological formations, such as the 

Lakharpata Formation, Lower Siwalik, Recent Deposits, Swat Formation, Suntar Formation, Upper Siwalik, and 

Middle Siwalik, and classified them accordingly (Fig. 4e). Based on the FR value, the Middle Siwalik Formation 

showed the highest value among the geological formations for all study periods due to the geological properties of 

this region. The Middle Siwalik Range is made up of sandstones, siltstones, and mudstones, sedimentary rocks 

that are easily weathered, making them susceptible to landslides due to weak interlayer bonds and poor strength. 

Furthermore, this area experiences high rainfall, which can further increase  

the vulnerability of geological formations and trigger landslides.  
 
 
 
 
 
 
129  

https://rds.icimod.org/
https://www.dmgnepal./


Advances in Engineering and Technology: An International Journal | Vol. 3 | Issue 1 |121-138 Gyawali et al. 

 

Lineament Density  

The spatial analyst tool in ArcGIS 10.8 was used to generate the lineament density map (Fig. 4f) from the 

lineament map. Lineament density was categorized into four ranges: < 0.5, 0.5 - 1.0, 1.0 - 1.5, and 1.5 - 2.04. 

Lineament density classes have varying effects on slope stability and landslide susceptibility. The 0-0.5 

density class showed higher stability during SP-I and SP-II, indicating lower fracturing and faulting, which 

may lead to less groundwater storage and less pore pressure, stabilizing the slope. However, the 1 -1.5 

density class had higher susceptibility during SP-III, possibly due to increased pore pressure caused by 

changing climatic conditions, which can increase pore pressure in slopes with a higher degree of fracturing 

and faulting, making them more prone to landslides.  

3.2.3. Hydrological Factors  
 

Distance to Stream  

The DEM of the study area was used to generate a stream network map in ArcGIS 10.8, using the flow  

accumulation map. Then, the spatial analyst tool was employed to create a distance to stream map (Fig. 4g),  

which was subsequently divided into four classes: 0-50 m, 50-250 m, 250-1000 m, and >1000 m. During the  

study periods, the range of 50-250 m exhibited higher FR values compared to the other classes. This finding  

could be attributed to several factors. Firstly, locations within this range may be more susceptible to high  

water flow or flooding during severe rainfall events, which could increase the likelihood of landslides.  

Second, the range may indicate areas with steeper topography or incised channels, which could increase the  

susceptibility to landslides  

Stream Power Index  

The stream power index (SPI) is a measure of the erosive power of flowing water. This index is computed 

based on the slope and the contributing area, and it provides an approximation of where gullies are more 

likely to develop. SPI is calculated using the following equation:  

 

Where, SPI is the stream power index at grid cell, is the upstream drainage area (flow accumulation at grid 

cell multiplied by grid cell area), is the slope at grid cell in radians.  

The stream power index map (Fig. 4h) for the study area was generated using the ArcGIS raster tool and 

divided into five classes: 3, 6, 9, 12, and greater than 12. Based on the FR values, the class range of 6-9 

showed a higher susceptibility to landslides compared to areas with lower or higher values. The reason for 

this may be attributed to the ideal combination of slope materials, drainage area, slope gradient, and channel 

gradient in regions with the class.  

 

Topographic Wetness Index (TWI)  

The  topographic wetness  index  (TWI)  is  commonly  used to  measure  the  impact of topography  on  

hydrological processes and describes the distribution of soil moisture. TWI is calculated using the formula:  

 

 

Where, a represents the accumulated upslope area draining through a point and tan  is the slope angle at that  

point. In this study, the TWI map (Fig. 4i) of the study area was generated using the raster tool in ArcGIS and was  

classified into four categories: -6.9-5, 5-7.5, 7.5-10, and 10-21. The FR distribution showed that TWI class ranges of - 

6.9-5 and 5-7.5 had higher values for all study periods. This indicates that these areas have moderate  

to high potential for water accumulation, which can lead to increased soil saturation and  decreased soil 
stability, thus increasing the likelihood of landslides in these regions.  
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3.2.4 Anthropogenic Factors  
 

Land Use  

The ICIMOD Regional Database System (https://rds.icimod.org/) was used to obtain a land use and land  

cover map of Nepal. The acquired map was then processed in ArcGIS 10.8. The land use land cover was 

divided into six classes: Water bodies, Bushes, Forest, Cultivable land, Built-up and Barren land (Fig. 4j1, j2, 

j3). For Land use, bushes and barren land have higher FR values in SP-I and SP-III, while for SP-II, bushes 

and agricultural land contributes to higher FR values. This could be attributed to changes in practices for 

land use and management over time.  

 

Distance to Road  

The distance to the road map was prepared from the road network map obtained from the Humanitarian Data 

Exchange, which combined data from the Department of Survey, Nepal, with information from the SRN Strategic 

Road Network 2016. The map is further classified into five classes: 0-50m, 50-250m, 250-1000m, 1000-2500m and 

over 2500m (Fig. 4k1, k2, k3). FR analysis infers that for SP-I and SP-II, the class range of 50-250m has a higher 

value, while for SP-III, the range of 250-1000m has a higher value. This could be because there was more human 

activity and development within 50-250m of the roads in the past, which increased the chance of landslides in that 

area. However, in more recent times, human activity and development may have spread to locations further from 

highways, resulting in higher FR values in the range of 250 to 1000 m.  

3.2.5  Climatic Factors  
 

Precipitation  

A change in the pattern of rainfall over time refers how the climate change has imposed on the climatic variables.  

To determine the annual precipitation in a particular area between 2005 and 2019, data was collected from two  

meteorological stations, Station 702 and Station 703, located in Palpa and Rupandehi, respectively. The study  

period was divided into three periods, labeled Study Period I (SP-I), Study Period II (SP-II), and Study Period  

III (SP-III) from 2005-2010, 2010-2015, and 2015-2020, respectively. The study focused on the maximum 

amount of rainfall since this is a significant factor in causing landslides. Daily and monthly maximum 

precipitation values were analyzed, as shown in Fig. 5 and Fig. 6. The graphs demonstrate that there is no 

consistent pattern in the daily rainfall data over time, but there is an overall increase in the monthly 

precipitation values from the base year to the observed year period. This suggests that rainfall patterns are 

changing with time due to the impact of climate change on climatic variables.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Daily Maximum Rainfall  
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Fig. 6 Monthly Maximum Rainfall  

Stations No. 702 and 703, located close to the research area, were used to create a precipitation map and divided 

into five classes (Fig. 7l1, l2, l3). The FR value was found to be higher for the class range of 243.9-244.1  

mm during SP-I, less than 229.5 mm in SP-II, and less than 293.0 mm in SP-III. The variation in FR values for 

different precipitation ranges in different time periods may be due to the unique topographical and 

geological characteristics of the research area and its local rainfall patterns. The daily maximum rainfall 

varied across the study periods, and the increasing monthly maximum value over time suggested that 

cumulative rainfall played a crucial role in causing landslides in SP-III.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Rainfall Maps: SP-I, l2) SP-II, l3) SP-III  

The variable causative factors are presented in the Table 2 below. The data reveals that over time, there was  

a significant reduction in the amount of cultivated land, and a corresponding increase in the built -up areas,  

forests, and bushes. Additionally, the distance from the road had a significant impact, as areas within 1km of  

a road increased from 47% to 62%. These changes in land use, along with the construction of new roads and  

the higher levels of precipitation, are all factors that contributed to the occurrence of landslides.  
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Table 2 Variable factors for different study periods 
 
 
Causative Factors Class 

 

Area (%) 

SP-I SP-II SP-III 
 
 
 

Land use 
 
 
 
 
 
 

Distance to Road (m) 
 
 
 
 
 

Precipitation 

Bushes 1.82 

Forest 71.37 

Cultivable Area 24.06 

Built up 1.04 

Water Bodies 1.38 

Barren land 0.33 

0-50 4.03 

50-250 11.99 

250-1000 31.74 

1000-2500 36.62 

>2500 15.63 

Class-I 9.61 

Class-II 20.46 

Class-III 16.49 

Class-IV 30.71 

Class-V 22.73 

3.03 18.82 

72.52 75.20 

21.35 0.49 

1.09 4.00 

1.38 1.38 

0.62 0.10 

5.64 6.05 

16.01 16.80 

38.60 39.24 

32.14 30.30 

7.61 7.61 

7.63 4.93 

15.72 18.58 

14.54 20.11 

28.96 29.40 

33.15 26.99  

 

1.3 Landslide Susceptibility Analysis  

In this research, the frequency ratio model was used to assess the probability of landslides by analyzing  

twelve specific factors and comparing them with previous landslide occurrences. The relationship between  

these factors and landslides was determined by their frequency ratio values; a higher value indicating a  

higher susceptibility to landslides. The PR and FR values were calculated for each class using a 75% training  

dataset after conditioning the factors. A high PR value for a factor indicates a strong correlation with the  

occurrence of landslides in the area. The results showed that the PR values for each factor differed during  

the three study periods, with land use becoming increasingly important over time. Other factors, such as  

slope, distance to the stream, geology, and precipitation, also showed changes in their PR values, with some  

increasing and others decreasing. Fig. 8 depicts the predictive rate of all twelve causative factors, indicating  

dynamic nature and their importance over time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Predictive rate of causative factors  
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The susceptibility weight for each factor was calculated by multiplying their FR values by PR. This process  

was repeated for all factors, and the resulting weight maps were plotted as raster maps. These maps were  

then added together to generate the Landslide Susceptibility Index (LSI) map, which is presented in Fig. 9.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Landslide Susceptibility Index Maps  

3.3.1  Validation  

Measures of the  goodness  of fit  and  predictive  power  of the  susceptibility  model  are tested  using 

independent populations of landslides [23]. The susceptibility model is compared with the randomly 

selected training and testing set, i.e., 75% and 25% of total landslides. The presence of these landslides sets a 

higher LSI value, which shows higher success and prediction rates [24]it is part of the northwestern 

highlands of Ethiopia. This area is part of the Guna Mountain which is characterized by weathered volcanic 

rocks, rugged morphology with deeply incised gorges, heavy rainfall and active surface processes. Many 

landslides have occurred on August 2018 after a period of heavy rainfall and they caused many damages to 

the local people. In this study, Frequency Ratio (FR. The area under the curve (AUC) of the graphs prepared 

using the training and testing data sets and the reclassified landslide susceptibility map produce success and 

prediction rates, respectively, as illustrated in Fig. 10 for all study periods.  

The results showed that the model’s performance was consistent over time, with success rates ranging from  

82.73% to 84.56% and prediction rates ranging from 78.98% to 79.77%. These figures indicate that the model  

was able to accurately classify a significant portion of the validation data set and had a high degree of  

success in predicting where landslides would occur. Overall, the goodness of fit and predictive power  

measures suggest that the prepared susceptibility model was effective in assessing landslide susceptibility.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Success rate and prediction rate for different study periods  
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3.3.2. Classified Landslide Susceptibility Maps  

The landslide susceptibility map is categorized into five classes: very low, low, moderate, high and very  

high, using the Jenks natural break classification method in GIS. Fig. 11 shows the landslide susceptibility  

maps for three study periods. From the Table 3, it can be observed that the percentage coverage of the very  

low susceptibility classification has decreased from 2% in SP-I to 1% in SP-III. In contrast, the percentage  

coverage of the high and very high susceptibility classifications has increased, with the high susceptibility  

classification increasing from 12% to 32% and the very high susceptibility classification increasing from 2%  

to 9% over the same time period. The region covered by very low susceptibility landslides is decreasing as  

more and more land becomes vulnerable to moderate to high susceptibility landslides. This demonstrates  

how the region becomes increasingly vulnerable to landslides as the year progresses.  

The variable factors and their characteristics, like shifts in land use patterns, climatic circumstances, distance to  

roads (see, Table 2) and other runoff related factors are the reason for these changes. Landslides, for example, may  

occur more frequently if urbanization or deforestation increases in a specific area. Similarly, heavy rainfall  

or changes in topography can also affect the susceptibility of an area to landslides.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Classified susceptibility maps for different study periods  

Table 3 Landslide affected area for different susceptibility levels from 2005-2020  
 

2005-2010 2010-2015 2015-2020 

S.N. Susceptibility Area (sq. Percentage Area (sq. Percentage Area (sq. Percentage 

Classification km) Coverage km) Coverage km) Coverage 
 

1 

2 

3 

4 

5 

Very Low 

Low 

Moderate 

High 

Very High 

4.187 

94.959 

88.599 

25.295 

3.991 

2% 

44% 

41% 

12% 

2% 

34.156 

66.161 

61.756 

40.910 

14.050 

16% 

30% 

28% 

19% 

6% 

3.127 

38.909 

86.549 

71.173 

19.251 

1% 

18% 

40% 

32% 

9% 

 

3. Conclusions  

The Siddhababa Area, which lies in the western region of Nepal within the administrative borders of Palpa and  

Rupandehi, is susceptible to landslides due to a combination of factors such as steep slopes, complex geology,  

diverse vegetation cover, and extreme weather conditions like heavy rainfall. This study investigates 281  

landslides in an area of approximately 257.38 km2 over three different periods (2005-2010, 2010-2015, and  
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2015-2019), taking into account 12 factors, including three variable factors such as land use, distance to the 

road, and precipitation. Some of the major conclusions drawn from this study are as follows:  
 

•  The precipitation data of stations 702 (Palpa) and 703 (Rupandehi) reveal that the change in maximum  

monthly rainfall increases by approximately 100 mm for both stations over time. This trend is expected to 

increase with a changing climate and poses a high risk of occurrence in the study region.  

 

•  The variable factors considered in this study revealed that the expansion of built-up land, the  

decrease in the distance to newly constructed roads, and the increase in precipitation are the main 

reasons for the increase in the area classified as having a high or very high susceptibility.  

 

•  Susceptibility is classified into five levels: very low, low, moderate, high, and very high. For the  

study period 2005-2010, 45.7% of the area had very low susceptibility, while moderate susceptibility 

accounted for 40.8%, and high to very high susceptibility accounted for 13.5%.  

 

•  Similarly, for the next study period (2010-2015), the percentage of the area with low and very low  

susceptibility coverage remained the same at 46.2%, whereas moderate susceptibility coverage 

dropped to 28.5% and high to very high susceptibility coverage increased to 25.3%.  

 

•  In the period from 2015 to 2020, the area with low and very low susceptibility coverage decreased to  

19.2%, while moderate coverage increased to 39.5%. The very high susceptibility coverage rose to  

41.3%.  
 

•  The threefold increase in high and very high susceptibility coverage over the years highlights the need for  
 
better land-use management approaches. Such practices should attempt to minimize disturbance  
 
to natural landscapes, avoid soil erosion, and maintain soil stability.  
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