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ABSTRACT

Employing the model equation for mass spring system, which is of second 
order differential equation, we analyze the displacement with various opposition 
forces applied on the mass of the spring. We observe that if there is no external 
force on the mass of the spring, the opposition force causes the displacements of 
mass of spring. We also analyze the system by finding its analytic and numerical 
solution, and compare their results.

Keywords:   Mass of spring - opposition forces - analytic and numerical solution.

INTRODUCTION 

Bridges vibrate when heavy vehicles pass along it; the vibration of 
the wings of the aircraft occurs when there is turbulence. Engineers have a 
large concern of the vibration of machinery during operations (Zhang et al., 
2017). Newton’s second law of motion is applied in the transitional systems 
analysis as the sum of all forces applied to a body equals the product of the 
vector acceleration of the body times its mass. Shaw et al. (1989) studied 
the steady state vibrations of a non-linear dynamic vibration absorber. 
Natsiavas (1992) developed the method of averaging to investigate the 
stability of non-linear dynamic vibration absorbers. Oueini et al. (1998) 
presented theoretical and experimental results of the application of the 
vibration absorber. Oueini et al. (1999) studied the dynamics of a nonlinear 
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active vibration absorber. The equations of motion are developed and 
analyzed through perturbation techniques and numerical simulation. 
Metallidis and Natsiavas (2000) investigated the dynamics of a mechanical 
system with continuous characteristics. Zhu et al. (2004) studied the non-
linear dynamics of a two-degree-of-freedom vibration system with non-
linear damping and non-linear springs. Zhou et al. (2020) established the 
model of the disc spring system in vibration screen.

Generally, mathematical models are used to represent transitional 
systems which have the basic building of springs, dashpots and masses 
(Boyce & DiPrima, 2005; Johnson, 2012).   Spring   coefficients (stiffness 
of the spring), dashpot (forces opposing the motion) and mass (inertial or 
resistance to acceleration) constitute three basic building blocks of mass 
of spring and their physical representation.   The stiffness of a spring is 
described by the relationship between the forces used to extend or compress 
a spring, and the resulting extension or compression that arises in the 
system. The dashpot mainly creates the damping or opposition force that 
slows down the motion, and it generally consists of a piston moving in 
a closed cylinder as an idealized representation. According to Newton’s 
second law of motion, bigger the mass is, greater is the force required to give 
it a specific acceleration (Schilling, 2011; Shin et al., 2018). Both analytic 
and numerical solution techniques can be employed to solve the problems 
of vibrating mechanical systems. As some recent advancement in numerical 
method, Jnawali and Bhatta (2016) developed some variant of Newton 
type methods based on inverse function. Pokhrel et al. (2020) analyzed the 
analytic solutions of the model equation of blood flow through artery with 
mild stenosis, which is in the form of partial differential equation.

Figure 1: Vibration of mass of string with an external force F (t) 
(Awrejcewicz, 2012).
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In this paper, we examine the effects of the displacement of mass 
of spring due to the opposition forces. We observe various displacement 
patterns of the spring-mass that is also subjected to an opposition force, 
with and without an external force on the mass of the spring. We analyze 
the displacements by also finding its numerical solutions using Runge-
Kutta fourth order, and compare the results with analytic solutions. We 
also analyze the errors on the numerical approximation with respect to the 
analytic solutions.

MODEL EQUATION

A mass-spring system which consists of one mass is with single 
degree of freedom. We take an ordinary spring that resists compression 
and extension both, and suspend it vertically from fixed support as shown 
in Figure 1 (Awrejcewicz, 2012).  The upper end of the spring is attached 
to a mass m, and the body is pulled down in a certain distance and then 
released, then it begins to vibrate. It is assumed that the spring-mass moves 
strictly vertically.  From this physical phenomenon, the model equation 
is formulated by applying Newton’s second law of motion (Boyce and 
DiPrima, 2005).  If there is an external force  F(t) act on  the body on  
downward or upward, then the  forced vibrations are obtained,  and if the 
constants F0, and ω0  are respectively the amplitude  and frequency of the 
force  F(t) , then F(t) =  F0 cos ωt.  If the mass is moving downward, 
the opposition force is directed upward with damping coefficient γ. So, the 
following model describes of the motion (Rao, 2000) as:

m u'' ( t)  +  γu'(t) + k u =  F(t) = F0 cos ωt.	 …(1)

Here, t denotes the time variable, m is mass, and k is a spring 
constant of the spring-mass system. The initial conditions are− the initial 
position u (0) = α, and initial velocity u'(0) = β. Along with these initial 
conditions, the model equation (1) becomes an initial value problem of 
the spring-mass system. This is a non-homogenous second order ordinary 
differential equation, so its general solution is u(t) = uc(t) + up(t), where   
uc(t) is the transient solution and up(t) is steady state solution (Johnson, 
2012). If there is no external force on the system, then F(t)  = 0, and the 
model equation (1) reduces to

m u'' ( t)  + γu'(t) + k u = 0.	 …(2)

Let u(t) = e  r t  be  a  solution of (2). Then,

( m r2  +  γ r  +  k ) e r t =  0.
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Since e  r t  ≠ 0,        m r2 +  γ r +  k  =  0. 

This is quadratic in r; the roots of this equation are
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Since m, γ, and k are positives, γ2 - 4k m is always less than γ2. So, 
the roots r1 and r2 are distinct and negative if γ2 - 4k m > 0. If γ2 - 4 m k = 0, 
then the roots  r1 and r2 are real and equal. If γ2 - 4m k < 0, then the roots r1 
and r2 are both imaginary with negative real parts. Hence, the three possible 
solutions of the model (Johnson, 2012) are

...(4)u(t) = 
c1 e - r1 t  + c2 e r2 t¸	 if  γ2 - 4 m k > 0,

e - γt/ 2m (c3+ c4 t ¸	 if  γ2 - 4 m k = 0¸

e - γt/ 2m  c5 cos µt +  c6 sin µt¸	 if  γ2 - 4 m k < 0¸

where µ =   4 m k - γ2/ 2 m . With initial position u(0) =  α, and initial 
velocity, u′(0) = β, the solutions (4) tend to zero as time approaches to 
infinity, i.e., u(t) dies out as t increases. These analytic solutions are called 
the transient solution. If an external force  F (t) =  F0 cos ωt,  where  F0 
> 0 constant, is  applied on the mass of the spring,  then the  steady state 
solution up(t) =  a cos ωt + b sin ωt,  of the model equation (1) does not 
die out as t increases but keeps on being effective as long as the external 
force is applied. This solution represents the forced response (Kattel and 
Kafle, 2018). It is convenient to express up(t) as a single trigonometric term 
rather than as a sum of two terms.  Applying the method of undetermined 
coefficients let the solution be 

up(t) =  a cos ω t +    b sin ω t,	 …(5)

where a and b are constants of integration. Differentiating (5) with respect 
to t, we get

up′ (t)  = - aω sin ω t  + bω  cos ω t,     up″ (t) =  - aω2 cos ω t  -   bω2 sin ω t .

Substituting these in (1), we get

-am ω2 cos ω t - b m ω 2sin ω t  - aγ ω sin  ω t +  bγ ω cos ω  t

+ k  a cos  ω t +    k b sin ω t = F0 cos ω t,

⇒ ((k - m ω2)a  + b γ ω) cos ωt + (- γ ω a + (k - m  ω2) b) sin ωt   = F0  cos ω t.
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Equating the coefficients of like terms, 

(k - m ω 2) a  +  b γω  = F0  and  (- γ ω a + (k - m  ω2) b) = 0.

This forms a system of linear equations for two unknowns a and b with 
solution: 
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where the expression in the denominator is not equal to zero. Setting ω0  =  

k m/
 ,  then
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Hence, the particular solution of (1) is

up(t) = 
F m t F t

m

0 0

2 2

0

2
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If we suppose a =  R cosη,  b = R sin η, then (3) takes the form up(t) =  R 
cosη cos ω t +   R sin η sin ω t = R cos (ωt - η),

so that R 2 =  a2 + b2   = F

m

0

2

0

2 2
2

2 2ω ω ω γ−( ) +
, and tan η =  b

a m
=

−( )
ω γ
ω ω
0

2 2
 . 

In the case of very small damping, this will give satisfactory results over 
time interval. 

Figure 2: The displacement of mass as function of time with small damping, 
γ2  < 4 m k.
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RESULTS AND DISCUSSION

With the analytic solutions (4) for the displacement, below, we study 
the time-behaviour of the displacements for different values of the damping 
constant γ. When  a mass weighing  6 lb stretches a spring 3 inches, then the 
spring constant is found as  k =  6 lb / 3 in = 24 lb / ft, and mass is obtained 
as m = 6 lb / 32ft s-2 = 3/16 lb s 2/ft.  In this choice of the parameters, 4m.k 
= 4.3/16.24 = 18 lb2. s2/ft2. To plot the third case (γ2 < 4 m k) of the solution 
for the displacement (4),  our γ must have value less than 3√2 lb. s/ft. Figure 
2 reveals this case for the different damping coefficients  γ = 1.5 lb. s/ft,  γ = 
2.0 lb.s / ft, γ = 2.5 lb. s/ft,    γ = 3.0 lb. s/ft, the displacement   are    3.3113 
ft, 3.9071 ft, 4.3761 ft,   4.7521 ft  at time

Figure 3: The displacement of mass as function of time with larger 
damping, γ2  >  4 m k.

Figure 4: The displacement of mass as function of time with the case, γ2   
=  4 m k.
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t = 2.201 s, and with the initial displacement of   mass-spring, u(0) 
= 1/2 ft, and  initial velocity   u′(0) = 0 ft s-1.  In the case of γ2 < 4k m, the 
opposition forces affect the displacement of the spring differently, whereas 
there is almost no displacement as t approaches 30 s. 

With the same   spring constant    k =  24 lb / ft,  mass  m = 3/16 lb.s2/
ft, and the initial position of the  mass of spring, u(0) = 1/2 ft, and  initial 
velocity u′(0) = 0 ft s-1, but  with the different case  of γ2 > 4k m (i.e., γ > 3√2 
lb. s/ft), the displacements  (almost) vertically drop   to reach  u = 0.2134 ft  
for  the increasing damping coefficients γ = 6 lb. s/ft,  γ = 8 lb.s / ft, γ = 10 lb. 
s/ft, γ = 12 lb. s/ft at  time  t = 2.21 s as shown in Figure 3.  The displacement   
vanishes   at time t = 10s for    damping coefficient   γ = 6 lb. s/ft, whereas 
for damping coefficient γ = 8 lb.s / ft, the displacement vanishes at time t = 
25s. When opposition force increases, the displacements take longer time 
to vanish. This is physically meaningful.

Figure 4 plots the solution for the displacement of the vibrating 
system of the second case of (4), where γ2 = 4k m. So, we study the different 
behaviours of the displacements of the system, we choose fixed m = 1/8 
lb.s2/ft, but with different spring constants, k = 32, 72. 128 and 200 lb / 
ft, with the respective damping forces γ = 4, 6, 8 and 10 lb. s/ft. In each 
case, the amplitude (maximum value) of the displacement is of 12 m, but 
they are attained in longer time for smaller opposition forces. It is equally 
interesting to observe that the displacement dies out earlier for larger, and 
later for smaller opposition forces.

Figure 5: The displacement of mass as function of time with external force  
F  =  F0  cos ω t. 
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Previous analyses (Figure 2-4) for displacements were for the 
vibrating system with opposition forces, but without the external force. 
Our next analysis (Figure 5) is for the system with an external force F = 
F0 cos ωt, as defined earlier. With the solutions with (4) together with for 
the particular integral (5), here, we reveal the behavior of displacements 
without the opposition force (γ = 0 lb s/ft) and with other two opposition 
forces (γ = 0, 0.125, 4 lb. s/ft) .  In case if there is no opposition force, (i.e., 
γ = 0), Figure 5 reveals that the displacement is up to u = 1.5 ft  in the time 
interval  0 ≤ t ≤ 30 s.  In either of the cases γ2 < 4 k m or γ2 > 4k m,   the 
displacement converges to zero after t  = 30s for γ = 0.125  lb. s/ft and γ =  
4 lb. s/ft as in Figure 5. 

NUMERICAL SOLUTION

Here, we also solve the model equation numerically, and maximum 
iterations processes are employed to make less error in the numerical 
solution (Jnawali and Bhatta, 2016;  Pokhrel, 2017 ). Consider the   time 
interval  T  = { t :   0 <  t   <  tN }, and  it is subdivided into the  ( N + 1) equal 
subinterval  with  time step  ∆ t  = h  whose ends points are the mesh points 
ti = 0 +  ih, for    i =  0, 1,… N + 1, where h = (tN – 0)/ (N +1).  Introducing 
the variable z = z (t)  ( Kreyszig, 1979 ), the model equation (1) can be 
written  in the form:
du
dt

z f t u z with u= = =1 0 1
2

( , , ) ( )  

du
dt

F
m

t
m
z k
m
u f t u z with z u= − − = = =0

2 0 0 0cos ( , , ) ( ) '( )ω
γ

.

Applying Runge-Kutta fourth order method, it is written ( Kreyszig, 1979; 
Pokhrel, 2018) as

u i +1  = u i + 1
6  (k1 + 2k2 + 2k3 + k4),  and  z i +1  = z i + 1

6  (l1 + 2l2 + 2l3 + l4) ;

where	 k1 =  h f1 (t i , u i , z i) = h zi ,  l1 = h f2 (ti , ui , zi) = h 
F
m

t
m
z k

m
ui i i

0 cos ω γ
− −








	 k2 =  h f1 (t i + 0.5h , u i + 0.5 k1, z i + 0.5l1) = h (z i + 0.5 h) 

	 l2  =  h f2 (t I + 0.5h , u I + 0.5k1,  z i + 0.5l1) 

	 = + − +( ) − +( )





h F

m
t h

m
z l k

m
u ki i i i i

0 0 5 0 5 0 5cos ( . ) . .ω
γ ,

	 k3 =  h f1 (t i + 0.5h , u i + 0.5 k 2, z i + 0.5 l2) = h (z i + 0.5 h) 
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	 l3  =  h f2 (t i + 0.5h , ui + 0.5 k2,  z i  + 0.5 l2) 

	 = + − +( ) − +( )





h F

m
t h

m
z l k

m
u ki i i

0
2 20 5 0 5 0 5cos ( . ) . .ω

γ ,

	 k4 =  h f1 (t i + h , u i +  k 3, z i +  l3) = h (z i +  h) 

	 l4  =  h f2 (t i + h , u i +  k 3,  z i  +  l3) 

	 = + − +( ) − +( )





h F

m
t h

m
z l k

m
u ki i i

0
3 30 5 0 5 0 5cos ( . ) . .ω

γ , for i = 1,2,…, N.

Table 1: The error analysis of the displacement of a spring-mass system.

Time:   t [s] Disp.: u [ft] 
Numerical

Disp.: u [ft] 
Analytical  Error (ε)

0.00 0.5000 0.5 0

3.75 0.1130 -0.5264 0.0808

7.50 -0.4456 0.3086 0.0926

11.25 -0.0729 -0.3335 0.1153

15.00 0.2160 0.1828 0.1253

18.75 0.1969 -0.1734 0.0957

22.50 -0.2182 0.1133 0.1146

26.25 -0.0977 -0.0511 0.0535

30.00 0.0575 0.0813 0.0835

33.75 0.1609 0.0309 0.0145

37.50 -0.0777 0.066 0.0474

41.25 -0.0793 0.0728 0.0089

45.00 -0.0013 0.0511 0.0143

48.75 0.0887 0.0784 0.0148

52.50 0.0024 0.0281 0.0121

56.25 -0.0635 0.0561 0.0086

60.00 -0.0022 -0.0035 0.0304

Note: The numerical and analytical results from the model equations.
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NUMERICAL RESULTS

Figure 6 describes the numerical solution (o) and the analytic 
solution (solid line) in time interval 0  ≤ t ≤ 60 s.  The initial position of a 
mass of spring with m = 1 lb s2/ ft is u (0) = 1/2 ft, initial velocity zero, spring 
coefficient k = 1 lb/ ft. When opposition force is applied with damping 
coefficient γ = 6 lb s/ft, the spring is displaced with a sharp oscillation in 
the spring. 

Figure 6:  The displacement of mass with external force  F = F0  cos ω t 
obtained from both numerical and analytical approaches.

Then after it, there is damping in the oscillation. The damping 
continues with substantial decrease in the amplitude of the displacement 
as shown in Figure 6. The analytical and numerical solutions are almost in 
line with each other. The errors in analytical and numerical solutions are 
shown in Table 1.

CONCLUSION

We presented the model equation and the analytic solution of mass 
of spring with external and viscous (damping or opposition) force. We 
examined the displacement of mass-spring system with various damping 
coefficients.  We found that higher the damping coefficients, higher are 
the displacement of mass of spring in most cases of the analytic solutions. 
We analyzed the displacement of mass of spring by applying and without 
applying an external force.  We also used Runge-Kutta fourth order method 
to solve the model equation numerically. We found that the numerical 

ANALYSIS OF DISPLACEMENT OF VIBRATING OF MASS ...



31TRIBHUVAN UNIVERSITY JOURNAL, VOL. 35, NO. 1, JUNE, 2020

and analytical solutions are almost same. We also analyzed the error 
between the analytic and numerical solution. Error analysis showed that 
the displacement of the mass of spring due to opposition forces can be 
integrated numerically as well.   
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