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Abstract: Convection and diffusion are fundamental transport mechanisms that govern the flow of mass, heat or other
quantities in various physical, biological and engineering systems. The work overviews theoretical underpinnings, mathe-
matical formulations and numerical methods to analyze the convection-diffusion process in one and two dimensions, both
in steady and transient states. We have compared the analytical and numerical results using finite difference and finite
volume methods for fluid flow and temperature distribution. The numerical solutions are in agreement with the analytical
solution in one dimension. The work compares convection-diffusion with convection-dominating for larger velocities of
fluid flow. The solution obtained from FVM is in line with an analytical solution than the solution obtained from FDM.
The numerical simulation for the transient flow is also discussed.
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Introduction

Partial differential equations, including heat, waves, Pois-
son and the Laplace equation, describe the real-world prob-
lems of many physical issues. The convection-diffusion
equation describes a physical phenomenon having the two
processes of convection and diffusion of particles, energy,
or other physical quantities such as heat transfer, the dy-
namics of fluids and gases and pollution dispersions. Con-
vection, or advection, describes the heat transfer caused by
bulk fluid motion. In this process, transportation of mat-
ter occurs from one part of a system to another due to ran-
dom molecular motion, particularly due to randomness, and
transport from higher concentration regions to lower con-
centration regions to reach an equilibrium state of uniform
concentration. Examples of diffusion are heat diffusion,
molecular diffusion, and Brownian motion. Adolf Fick in
1855, Joseph Fourier in 1822, and Albert Einstein in 1905
developed their mathematical formulations2. There are ex-
act solutions to some simple cases described by these partial
differential equations in the domain of regular shapes. The
numerical methods employ various discretization and solu-
tion methods. The most widely used numerical methods
are the finite difference (FD), finite element (FE), and finite
volume method (FVM)27. The finite volume method is the
most frequently employed method in computational fluid

dynamics to solve convection-diffusion equations. Addi-
tionally, this simulates advection-diffusion with processes
dominated by convection10 which is the process of transfer-
ring matter caused by the average velocity of all molecules.
Let ρ be the density of the fluid, φ is the quantity being
transported (e.g., temperature, concentration), t be time, x

be the spatial coordinate, u be the velocity of the fluid, Γ is
the diffusion coefficient, ν is the kinematic viscosity and Sφ

is the source term. Then, the general transport equation in
differential form is given by equation (1) 27

∂

∂ t
(ρφ)+div(ρφu) = div(Γ∇φ)+Sφ . (1)

The first and second terms on the left side are unsteady and
the convective term, respectively, while the first and second
terms on the right side are diffusion and the source term, re-
spectively. The steady-state convection-diffusion equation
is27

div(ρuφ) = div(Γ∇φ)+Sφ . (2)

The first work on the use of finite differences to solve physi-
cal problems was written by Courant, Friedrichs, and Lewy
in 1928. This increased interest in FDM during the 1950s,
and 1960s as the Lax Equivalence Theorem examined the
idea of stability. Allen and Southwell published the first
numerical solutions to the convection-diffusion equation in
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the 1950s, which developed a research impetus in the 1970s
that has persisted to these days27. During the 1960s, CFD
was used to design, develop, and construct jet engines and
airplanes.

A four-step time-splitting approach was devised by Lin
R.K. et al.14 used a 2-dimensional convection-diffusion
equation to solve the convection-diffusion equation using
a fourth-order approximation. They verified the suggested
approach and estimated the second derivative terms us-
ing the fourth-order-accurate-centered Methodology. The
numerical approaches for governing convection-diffusion
problems started in almost 1969. The first time that com-
puter experiments were publicly and openly expressed was
in a Scientific American paper (1965) by Harlow and
Fromm, and CFD was born 27. The Russian mathematician
Grisha Shishkin was able to use a piecewise uniform mesh
in 19902. Miller, O’Riordan, Hegarty, and Farrell, four Irish
mathematicians, have been the main proponents of this the-
ory during the 1990s. Aswin, V. S. et al. developed uncon-
ditionally stable explicit-implicit schemes for convection-
diffusion problems3. The advection-diffusion equation was
employed to predict the concentration of pollutant transport,
according to a study by Johari et al.. Salkuyeh22 offered a
precise solution to the convection-diffusion equation. An-
alytical solutions to the one-dimensional diffusion equa-
tion have been provided by Kumar et al.25. Convection-
diffusion problems are the most frequently caused by lin-
earizations of Navier-Stokes equations with high Reynolds
numbers. Morton (1996) points out that one important and
difficult problem is the numerical approximation of par-
tial differential equations with an adequate description of
the interaction between convective and diffusive processes.
Divergent (conservative) models are the most widely uti-
lized type of convective transport model. Finite element
approaches for transient issues, approximations on general
polyhedra (the finite volume method), and finite difference
schemes on rectangular grids were covered by Churbanov 7.
Gasmi 9 studied the hydrocarbon system used for petroleum
reservoir simulations by using the global pressure formula-
tion of Chavent under assumptions like the applicability of
Darcy’s law; the incompressibility of the porous medium;
fluid compressibility; mass transfer between the oil and the
gas in negligible gravity. In order to achieve stable dis-
cretization in the convection-dominated regime, Bayramov
et al.4 using a time-dependent generalization of the mono-
tone edge-averaged finite element scheme showed that this
method is more appropriate for boundary layer problems.
Filbet 8 used the finite volume method for a family of non-
linear parabolic equations with non-homogeneous Dirichlet
boundary conditions. Numerical results validate the accu-
racy of the system and highlight its efficiency in maintain-

ing large-time asymptotic behavior. Mirza et al.15 used the
Laplace and Fourier transform with respect to the temporal
variable t and the space coordinates x and y to obtain a fun-
damental solution of the advection-diffusion equation with
time-fractional derivatives. For both the fractional/normal
diffusion process and the ordinary case of the normal ad-
vection–diffusion phenomenon, the particular solution was
obtained from the general solution. The convective term
was discretized using discrete exterior calculus by Noguez
et al. 18 in which the stabilization of discretization is com-
parable to the finite element method with linear interpola-
tion functions, was achieved through the use of established
stabilization techniques like artificial diffusion. To demon-
strate numerical convergence, they undertook numerical ex-
periments on basic stationary and transient cases involv-
ing domain discretization using coarse and fine simplicial
meshes. Kahlaf 11 found the approximate solution to the
two-dimensional Laplace equation with the use of numer-
ical techniques. Utilizing two distinct factors (five and
nine points) for the Laplace equation and finite elements
in regular shape, the finite difference method was found
to be the most accurate approach for determining Dirich-
let boundary conditions. To discretize the space-fractional
derivative and time discretize the equation, Bi Yanan et
al.6 developed a fully discrete finite volume scheme for
the two-dimensional space-fractional convection-diffusion
equation and the Crank–Nicholson scheme. The study sug-
gests numerical techniques to solve the model partial dif-
ferential equations. Theoretical analysis was validated by
the data. The study uses numerical techniques to solve
the model partial differential equations 5. There are dif-
ferent convection-diffusion equations, their discretization
techniques, and methods of solution. In this paper, we have
used finite difference, finite volume, and an analytical solu-
tion, to check the convergence and compare the results for
one- and two-dimensional convection-diffusion equations.

Methodology

Solving the convection-diffusion equation involves finding
the distribution of a quantity in a fluid flow system, con-
sidering both convection, which is the advective transport
due to fluid motion, and diffusion, the spreading or mixing
of the quantity due to molecular processes. We discretize
the domain into discrete grids or elements, solve the gov-
erning equations of fluid flow using initial and boundary
conditions, check the convergence, and validate the results
using analytical solutions. Results are presented after post-
processing with error calculations. Here we have used fi-
nite volume and finite difference methods for steady and
transient convection-diffusion equations of one- and two-
dimensional.

143 Scientific World Vol. 17, No. 17, June 2024



Governing Equations

The governing equation of the general transport equation is
defined by the equation (1). The one-dimensional steady-
state diffusion equation without source term is given by

d
dx

(Γ
dφ

dx
) = 0. (3)

A transient one-dimensional heat conduction equation with
a source term is

ρc
∂T
∂ t

=
∂ (k ∂T

∂x )

∂x
+S. (4)

with c, T , and k being the specific heat capacity of the ma-
terial, temperature, and thermal conductivity, respectively.
Some of the other forms of the convection-diffusion equa-
tions are:
one-dimensional steady convection-diffusion equation

d
dx

(ρuφ) =
d
dx

(Γ
dφ

dx
), (5)

one-dimensional transient convection-diffusion equation

d
dt
(ρφ)+

d
dx

(ρuφ) =
d
dx

(Γ
dφ

dx
), (6)

two-dimensional steady convection-diffusion equation

∂ (ρuφ)

∂x
+

∂

∂y
(ρuφ) =

∂

∂x

(
Γ

∂φ

∂x

)
+

∂

∂y

(
Γ

∂φ

∂y

)
, (7)

u and v are the velocities in X , and Y -directions, respec-
tively, and φ may be considered as temperature, concentra-
tion, or velocity.
Two-dimensional transient convection-diffusion equation is
given by

∂ (ρφ)

∂ t
+

∂

∂x
(ρuφ)+

∂

∂y
(ρvφ)=

∂

∂x

(
Γ

∂φ

∂x

)
+

∂

∂y

(
Γ

∂φ

∂y

)
.

(8)

Discretization

Discretization is a discrete representation of the geometry
of the problem that transforms continuous modes of the dif-
ferential equations into discrete counterparts. It replaces
the exact solution with discrete values and converts them
into algebraic equations. These equations are derived from
the differential equations governing the fluid flow property
φ . The grid has cells grouped into boundary zones where
boundary conditions are applied 23. To discretize the one-
dimensional diffusion equation (3), we take a general nodal
point P, and points E and W to the east and west, respec-

tively. The east-side control volume face is denoted by e
and the west-side control volume face is denoted by w. As
shown in figure (1), the distances between WP, wP, Pe, and
PE are represented by δxWP , δxwP , δxPe and δxPE , respec-
tively.

Figure 1: One-dimensional control volume with nodal points E and W ,
control volume faces e and w and general nodal point P.

We have used finite volume and finite difference discretiza-
tions. In the FV method, we get the discretized equation
by integrating the governing equation over a control vol-
ume, which gives a discretized equation at its nodal point P
which yields the control volume. Integration of the steady
diffusion equation (3) gives

(ΓA
∂φ

∂x
)e − (ΓA

∂φ

∂x
)w = 0 (9)

where A is the cross-sectional area of the control volume.
Integration with simplification of the convection-diffusion
equation (5) gives

aPφP = aW φW +aEφE . (10)

where aP, aW and aE are the coefficients associated with
the P, W and E nodes, respectively. The finite volume
discretization equation of the one-dimensional steady-state
convection-diffusion equation (5) is given by

(ρuAφ)e − (ρuAφ)w = (ΓA
∂φ

∂x
)e − (ΓA

∂φ

∂x
)w. (11)

The discretization of the two-dimensional transient heat
equation (diffusion equation) using the forward time and
central spacing (FTFS) scheme gives

(φ n+1
i, j −φ n

i j)

∆t
= Γ

[
(φ n

i+1, j −2φ n
i, j +φ n

i−1, j)

∆x2

+
(φ n

i, j+1 −2φ n
i, j +φ n

i, j−1)

∆y2

]
(12)

Rearrange the equation to solve for φ
n+1
i, j

φ
n+1
i, j = φ

n
i, j +Γ∆t

[
(φ n

i+1, j −2φ n
i, j +φ n

i−1, j)

∆x2
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+
(φ n

i, j+1 −2φ n
i, j +φ n

i, j−1)

∆y2

]
(13)

The discretization of the one-dimensional transient
convection-diffusion equation using the FTCS for a uni-
form grid is given by either of the equations (14) or (15).

φ
n+1
i = φ

n
i +∆t

(
ui(φ

n
i+1 −φ n

i )−ui−1(φ
n
i −φ n

i−1)
)

∆x

+Γ
∆t
ρ

(
(φ n

i+1 −φ n
i )− (φ n

i −φ n
i−1)

)
∆x2 (14)

φ
n+1
i = φ

n
i +

u∆t
2∆x

(
φ

n
i+1 −φ

n
i−1
)
+

Γ∆t
(∆x)2

(
φ

n
i+1 −2φ

n
i +φ

n
i−1
)

(15)
for varying and uniform convective velocity respectively.
The discretization of a two-dimensional transient
convection-diffusion equation

∂φ

∂ t
+u
(

∂φ

∂x
+

∂φ

∂y

)
= Γ

(
∂ 2φ

∂x2 +
∂ 2φ

∂y2

)
(16)

is given by

φ
t+∆t
i, j −φ t

i, j

∆t
+u

(
(φ t

i+1, j −φ t
i−1, j)

2∆x
+

φ t
i, j+1 −φ t

i, j−1

2∆y

)

= Γ

(
φ t

i+1, j −2φ t
i, j +φ t

i−1, j

∆x2 +
(φ t

i, j+1 −2φ t
i, j +φ t

i, j−1)

∆y2

)
.

(17)

Solving equation (16) numerically using the finite volume
method needs additional considerations such as time in-
tegration methods (e.g., explicit or implicit schemes) and
boundary conditions. The choice of grid spacing, time step,
and the relationship between the convection and diffusion
coefficients can influence the stability and accuracy of the
numerical solution. The discretization equation of one-
dimensional unsteady heat conduction equation (4) is given
by

aPTP = aW
[
θTW +(1−θ)T 0

W
]
+

aE
[
θTE +(1−θ)T 0

E
]
+
[
a0

P − (1−θ)aW − (1−θ)aE
]

T 0
P +b

(18)
where θ = 0, and θ = 1, the temperature at old and new
time levels t and t +∆t are used. Finally if θ = 1

2 , the tem-
peratures at t and t +∆t are equally weighted. Here A de-
notes the control volume’s face area, ∆V denotes its volume,
which is equal to A∆x, ∆x denotes the control volume’s
width, and S denotes the average source strength. Here aP =

θ(aW +aE)+a0
P and a0

P = ρu ∆x
∆t with aW = kw

δxWP
,aE = ke

δxPE
and b = S̄∆x.
The exact form of the final discretized equation depends on

the value of θ . When θ is zero, we use only temperatures
T 0

P , T 0
W and T 0

E at the old time level t on the right side of
equation (18) to evaluate TP at the new time, and the result-
ing scheme is explicit. When 0 < θ ≤ 1 temperatures at
the new time level are used on both sides of the equation,
and θ = 1

2 corresponds to the implicit scheme, while θ = 1
gives fully implicit Crank-Nicolson scheme. In the explicit
scheme, the source term is linearized as b = Su +SpT 0

P and
substituting θ = 0 into equation (18) gives the explicit form
of discretization of the unsteady conductive heat transfer
equation

aPTP = aW T 0
W +aET 0

E +
[
a0

P − (aW +aE −SP)
]

T 0
P +Su

(19)
where aP = a0

P and a0
P = ρu ∆x

∆t .
The right side of the equation (19), the left side can be com-
puted by forward time schemes. The accuracy of the Taylor
series truncation error in this approach, which is based on
backward differencing, is first-order in terms of time. Thus,
the coefficient of T 0

P may be regarded as the neighboring
coefficient that connects the previous values to the present
time level, which will be positive if a0

P−aW −aE > 0. Take
k constant and uniform grid spacing, δxPE = δxWP = ∆x,
this condition may be written as

ρu
∆x
∆t

>
2k
∆x

. (20)

This scheme will only be stable if

∆t < ρu
(∆x)2

2k
. (21)

When we set θ = 1
2 in equation (18) i.e. the case of

Crank - Nicolson scheme, the source term is linearized as
b = Su +

1
2 SPTP +

1
2 SPT 0

P . So that the discretized unsteady
heat conduction equation is

aPTP = aE

[
TE +T 0

E
2

]
+aW

[
TW +T 0

W
2

]

+
[
a0

P −
aE

2
− aW

2

]
T 0

P +Su +
1
2

SPT 0
P (22)

where aP = 1
2 (aW +aE)+a0

P − 1
2 SP and a0

P = ρc ∆x
∆t .

The method is implicit, based on central differencing, and
second-order in time, where all coefficients are positive for
physically realistic and bounded results. Here, the time step
limitation is only slightly less restrictive than (21) that of
the explicit method. For some combinations of ∆t and ∆x
this scheme may also yield physically unrealistic results.
When we take θ = 1, we get the fully implicit scheme. The
source term is linearized as b = Su +SPTP. The discretized
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equation becomes

aPTP = aW TW +aETE +a0
PT 0

P +Su. (23)

where aP = a0
P +aW +aE −SP and a0

P = ρu ∆x
∆t . The three-

dimensional convection-diffusion process can be seen in
different real-world situations. The solutions to the above
discretized equations are presented in the succeeding sec-
tion.

Results and Discussion

The numerical solutions of the convection-diffusion equa-
tion are typically assessed by contrasting them with ana-
lytical solutions. The analytical solution provided for a
finite domain is the most commonly used one 16. Here
we present some of the numerical solutions of one- and
two-dimensional convection-diffusion equations and one-
and two-dimensional diffusion equations plotted using Ex-
cel and Python.

One-dimensional steady-state heat conduction in an insu-
lated rod without source term is governed by the equation

d
dx

(κ
dT
dx

) = 0. (24)

κ being the thermal conductivity and T , the dependent vari-
able, and its ends are kept at constant temperatures of TA =

100oC and TB = 300oC respectively. We use the finite vol-
ume approach with thermal conductivity κ = 1000W/mK,
the cross-section area 0.01m2, and divide the length of the
rod into five control volumes. Given the boundary temper-
atures (T = 400x + 100), the analytical solution is a linear
distribution between them. The discretized form of equa-
tion (24) using finite difference approximation can be writ-
ten as

Ti−1 −2Ti +Ti+1 = 0

After solving above equation, we get T1 = 133.33, T2 =

166.66, T3 = 200, T4 = 233.33, and T5 = 266.66. The solu-
tion suggests that the finite volume method is in good agree-
ment with the analytical solution, as shown in figure (2), but
the finite difference method has a slight error in an accept-
able range.

For one-dimensional steady-state convection-diffusion (5)
with φ0 = 1 at x = 0 and φL = 0 at x = L, we use seven
equally distributed cells and the central differencing dis-
cretization for convection-diffusion, where φ , a function
of x, is calculated for different values u = 0.1,1.0,2.0
and 2.5 m/s with 20 grid nodes. Taking L = 1m, ρ =

1kg/m3and Γ = 0.1kg/m, the analytical solution of equa-
tion (5) between two points E and W is subject to the bound-

ary conditions

φ(x = 0) = φ0 and φ(x = L) = φL (25)

is given by 17

φ −φ0

φL −φ0
=

e
x
L p −1

eP −1
(26)

where P is the Peclet number defined by

P =
ρuL

Γ
. (27)

Figure 2: Comparison of FVM and FDM with the analytical solution
of the one-dimensional steady-state diffusion equation, where FVM
coincides with the analytical solution and FDM has a slight variation.

The discretized equation is

apφp = aW φW +aEφE (28)

where ap, aW and aE are the coefficients of φp, φW and φE

respectively and applied at internal nodal points 2, 3, 4, 5
and 6, but control volumes (1) and different treatments are
used for (7).

Figure 3: One-dimensional control volume with seven grid points

The discretized equation at its boundary nodes is given by

apφp = aW φW +aEφE +Su (29)

with coefficients

ap = aW +aE +(Fe −Fw)−Sp.

When velocity u = 0.1m/s, F = ρu = 0.1, D = Γ

δx =
0.1
0.14 =

0.71, the solution is φ1 = 0.9581, φ2 = 0.8619, φ3 = 0.7510,
φ4 = 0.6234, φ5 = 0.4764, φ6 = 0.3071, φ7 = 0.1122. In the
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case of the convection-diffusion equation, solutions from
FVM are more accurate than those from FDM as shown
in figure 4 below for u = 0.1m/s. This demonstrates the
greater accuracy of the finite volume method in capturing
the behavior of convection-diffusion processes at lower ve-
locities.

Figure 4: Comparison with an analytical solution with u = 0.1 m/s. The
finite volume method is closer to the analytical solution than FDM and
the solution converges.

When velocity u = 1.0m/s, F = ρu = 1, D = Γ

δx = 0.1
0.14 =

0.71, the solution is φ1 = 0.9999, φ2 = 0.9997, φ3 = 0.9997,
φ4 = 0.99845, φ5 = 0.9910, φ6 = 0.9486, φ7 = 0.70422.
When velocity u = 1.0m/s, then the solution by FVM is
closer to the analytical solution than FDM. As the distance
increases, the solution goes far from the analytical solution,
as shown in figure 5.

Figure 5: Comparison with the analytical solution of one-dimensional
convection-diffusion equation when u = 1.0m/s where the FVM is
closer to the analytical solution.

The simulated results show that the finite volume method
converges toward an analytical solution faster than the fi-
nite difference method.
Low-velocity flow is diffusion-dominated, resulting in
smooth and stable numerical solutions, whereas higher-
velocity flow becomes convection-dominated. At very high
velocities, numerical solutions can diverge, particularly at
higher grid points. This necessitates more refined numerical
techniques to handle sharp gradients and prevent instability.
When velocity u = 2.0m/s, F = ρu = 2.0,D = Γ

δx =

0.1
0.1428 = 0.7142 (figure 6), the solution is φ1 = 1.0000,
φ2 = 0.9999, φ3 = 0.9999, φ4 = 0.9980, φ5 = 1.01174,
φ6 = 0.93072, φ7 = 1.40844.
Again, when velocity u = 2.5m/s, F = ρu = 2.5,D = Γ

δx =
0.1
0.14 = 0.71, the solution is φ1 = 1.00021, φ2 = 0.9986,
φ3 = 1.00426, φ4 = 0.9839, φ5 = 1.05760, φ6 = 0.79036,
φ7 = 1.76035. In cases of higher velocities than u= 2.0m/s,
the solution diverges due to convection-dominated flow. If
the increased nodes satisfied the CFL condition, it con-
verged in figure 7.

Figure 6: Comparison with the analytical solution of the one-
dimensional convection-diffusion equation when u = 2.0m/s. For
higher velocity, the solution diverges, indicating that the flow becomes
more advection-dominated.

Figure 7: Comparison with the analytical solution of the one-
dimensional convection-diffusion equation when u = 2.5m/s, case of
divergence.

The figure 8 represents the two-dimensional convection-
diffusion that describes the transport of a quantity, typically
represented by the variable φ , in a fluid medium subject to
both convection and diffusion. The initial solution is the
circular region in the center of the domain, representing the
initial conditions.
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Figure 8: Two-dimensional convection-diffusion equation using the
initial solution (left), where the circular region in the center of the do-
main represents the initial conditions and a transient solution (right),
where the convection-diffusion equation drives the evolution of vari-
able φ across the domain.

At the beginning of the process, the variable φ has a cer-
tain distribution within the circular region, and the rest of
the domain is initially at some other state. Together, these
processes govern how φ changes and spread throughout the
domain, leading to the evolution of the system over time 10
seconds with lengths in x and y axes taken 1, the number of
grid points in x and y axes is 50 each; time steps 1000, c =
1 and Γ = 0.1.

Conclusion

The convection-diffusion equation is a fundamental partial
differential equation used to describe the transport phenom-
ena of fluid flow that combines the effects of convection,
the transport of fluid due to bulk movement, and diffu-
sion, the spreading of fluid particles due to random mo-
tion. The convection represents the transport of the quan-
tity due to the fluid’s bulk motion. Diffusion accounts for
the spreading due to molecular or turbulent diffusion. Solv-
ing the convection-diffusion equation analytically is often
challenging, especially for complex flow fields and bound-
ary conditions. Numerical methods like the finite vol-
ume method (FVM) and finite difference method (FDM)
are commonly employed to obtain approximate solutions.
For one-dimensional convection-diffusion, the finite vol-
ume method shows better agreement with the analytical
solution. The accuracy and convergence of solutions for
steady and transient states are compared. It is observed
that the finite volume method provides a more accurate

solution than the finite difference method. The numeri-
cal solutions converge to the analytical solution for veloci-
ties ranging from 0.1 m/s to below 2m/s, whereas for ve-
locities exceeding 2.0 m/s, divergence occurs at the final
grid node. Increasing the number of nodes improves the
convergence of the numerical solution, subject to satisfy-
ing the Courant-Friedrichs-Lewy conditions. The flow is
convection-dominated for higher velocities, while for lower
velocities, it is diffusion-dominated.
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