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Abstract: The solutions of perturbation equations in FLRW spacetime were further analysed for indications of structure 

formation. The radial and angular parts of the wavefunction reveal various possibilities of spatial and angular sizes in terms 

of quantum numbers ω, k, l and m. They offer slightly contrasting results for the three cases of the closed, open and flat 

universes including for each of all the 3 modes of perturbations – scalar, vectorial and tensorial. It is seen that the structures 

of large scales are more compact in the closed case, slightly diffuse in the flat one. Also structures of different sizes are 

more probable in the open case. 
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Introduction 

How the large-scale structures (LSS) are formed in the 

universe is one of the crucial questions that the 

cosmologists have been working on for a long time.  The 

formation of LSS begins with small density fluctuations 

seeded in the early universe, imprinted during cosmic 

inflation. These fluctuations arise from quantum 

fluctuations magnified to macroscopic scales during the 

rapid expansion of the universe1, 2. So, perturbation analysis 

provides a powerful framework for studying the formation 

and evolution of LSS in the universe, helping cosmologists 

to understand the underlying physics and test theoretical 

models against observational data3. 

Perturbation analysis in the context of Friedmann-

Lemaitre-Robertson-Walker (FLRW) spacetime, which 

describes the homogeneous and isotropic universe on large 

scales, faces several challenges and open problems 

including understanding the behaviour of perturbations in 

the nonlinear regime4, incorporating the effects of dark 

energy and dark matter accurately5, improving our  

 

understanding of the initial conditions for density 

fluctuations6, 7, developing robust methods for analysing 

observational data and extracting cosmological 

information8, and even extending the perturbation theory to 

alternative theories of gravity9, 10. 

Progress in perturbation analysis in FLRW spacetime is 

essential for advancing our understanding of the universe's 

large-scale structure and testing fundamental theories of 

cosmology and gravity. That’s why the perturbations in 

FLRW spacetime have been further investigated in this 

paper extending authors’ previous work11. Neumann-

Penrose (NP) formalism12 has been successfully applied to 

derive perturbation equations and find their solutions in 3 

different modes namely tensorial, vectorial and scalar. 

For all the three cases of closed, flat and open universe, 

curvature constant K = 1, 0 and -1 respectively, the angular 

part Y is always the spin weighted spherical harmonic with 

spin-weight |p|=0, for scalar (density), 1 for vectorial 

(rotational) and 2 for tensorial (gravitational) perturbations.  

The radial part R can be solved in terms of a boost-weight  
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functions that looks almost like the spin-weighted angular 

part, but in terms of non-conventional Jacobi polynomials 

that are nonetheless orthogonal. They can be analytically 

continued into the open case, and reduce to Coulomb wave 

functions in the flat one13. So we have been canvassing for 

an integrated view of the three cases, the over-density 

regions as closed universe, voids as open and the near 

region as flat part of the Universe.  

In terms of Jacobi polynomials14,  𝑃𝑛
(𝛼,𝛽)

, the angular and 

spatial parts are given respectively as 

𝑝𝑌𝑙
𝑚 = 𝑁𝑒𝑖𝑚𝜙(1 −𝑐𝑜𝑠  𝜃 )

𝑚+𝑝

2 (1 +

𝑐𝑜𝑠  𝜃 )
𝑚−𝑝

2 𝑃𝑙−𝑚
(𝑚+𝑝,   𝑚−𝑝)(𝑐𝑜𝑠  𝜃 )  …(1) 

𝑝𝑅𝑘
𝜔 = 𝑝𝑁𝑘

𝜔(1 − 𝑖 𝑐𝑜𝑡  𝑟 )−
(𝜔+𝑝)

2 (1 +

𝑐𝑜𝑡  𝑟 )−
(𝜔−𝑝)

2 𝑃𝜔−𝑘−1
(−𝜔−𝑝,−𝜔+𝑝)(𝑖 𝑐𝑜𝑡  𝑟 )  …(2) 

where, the spin helicity 𝑝 takes the values ±2 for tensorial 

perturbations, ±1 for vectorial perturbations and 0 for scalar 

perturbations; N is normalization constant; the parameters 

of Jacobi Polynomials are chosen such that the function will 

be regular at r = 0 and π.  

Further analysis are done in the next section. 

Analysing the solutions of perturbation equations 

For the case of closed universe (i.e.,K = 1), the angular and 

radial parts of the wavefunction, 𝜓 = 𝑌𝑅,  are given by 

equations (1) and (2). Some 3D plots of |Ψ|² for various 

cases are shown in Fig. 1. 

For the flat case (i.e., K = 0), the equation for the radial 

eigenfunction comes to be in the form of Coulomb wave 

equation13 

𝑅"(𝑟)  +  (𝜔2 −
2𝑖𝜔𝑝

𝑟
−

𝑘(𝑘+1)

𝑟2 ) 𝑅(𝑟) = 0    …(3) 

It’s solutions are in terms of Confluent Hypergeometric15 

function M(a, b, z) given by 

𝑅𝑘(𝑖𝑝, 𝜔 𝑟) = 𝐶𝑙(𝑖𝑝)(𝜔𝑟)𝑘+1𝑒∓𝜔𝑟𝑀(𝑘 + 1 ± 𝑝, 2𝑘 +

2, 2𝑖𝜔𝑟)   …(4) 

where, the normalizing constant 

𝐶𝑙(𝑖𝑝) =
2𝑙𝑒−2𝜋𝑝/2 |𝛤(𝑘+1−𝑝)|

(2𝑘+1)!
  …(5) 

Some typical plots of |𝑅|2 for various values of 𝜔, 𝑘 and 𝑙 

for all the three modes – tensorial, vectorial and scalar have 

been shown in Fig 2. The corresponding 3D plots have been 

shown in Fig. 3.
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For the case of open universe (i.e., K = -1), the radial part R 

of the solution is similar to the one for the closed case given 

by Eq. (2) with trigonometric function replaced by 

hyperbolic function: 

𝑝𝑅𝑘
𝜔 = 𝑝𝑁𝑘

𝜔(1 − 𝑖 𝑐𝑜𝑡ℎ  𝑟 )−
(𝜔+𝑝)

2 (1 +

𝑐𝑜𝑡ℎ  𝑟 )−
(𝜔−𝑝)

2 𝑃𝜔−𝑘−1
(−𝜔−𝑝,−𝜔+𝑝)(𝑖 𝑐𝑜𝑡ℎ  𝑟 )  …(6) 

The angular part Y remains same as for the closed one 

given by Eq. (1). The 3D plots of |𝑌𝑅|2 are shown in Fig. 

4.  

 

 

 

Fig.-2: Plots of |R|2 against r for scalar(bottom), vectorial (middle) 

and  tensorial (top) perturbations for flat case. The dashed curve is 

for ω = k = 2, solid curve is for ω = k = 3 and dot-dashed one is for ω 

= k = 4. All are for l = 1. The first ones are scaled differently in order 

to bring to comparable sizes. 

In all the three cases, structure formation is seen to be more 

probable in large scales. Further discussion is in the next 

section. 

Discussion and Conclusions 

In order to have insights into the physics of large scale 

structure formation, we have further investigated the 

perturbations. The peaking of the perturbation amplitude at 

large values of r as seen explicitly in Fig.1 shows that the 

structures of large-scales are easily formed in the case of 

closed universe.  The flat portion of the graph for smaller 

sizes suggests that there is little power or amplitude in the 

density perturbations at those scales. This could imply the 

presence of a characteristic scale below which density  

Fig.-1:  3D plots of |YR|2 against r and  for Tensorial (top), vectorial (middle) and scalar (bottom) perturbations for the closed 

universe. The left ones are for ω = 3, k = 2, l = 2, m = 2 and on the right are for ω = 5, k = 4, l = 3, m = 2. 
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fluctuations are suppressed or inhibited. This scale may be 

related to physical processes such as baryon acoustic 

oscillations (BAO) or the damping effects of free-streaming 

particles like neutrinos. 

 

 

 

The zoomed portions of typical plots of the closed case for 

a narrow range of r and θ show the separation between two 

clusters or galaxies. Obtaining its order of magnitude of 

these separations in order to be able to correlate them with 

the observed BAO scales16 will be taken up in future work. 

Fig.-3: 3D plots of |YR|2 against r and  for scalar (bottom), vectorial (middle) and tensorial (top) perturbations for flat case. Those on the 

left are for ω = 3, k = m = l = 2 and those on the right are for ω = 5, k = 4, l = 3, m = 2. 
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As shown in Fig. 2 and 3, in the flat case also, the structures 

of larger scales are more probable to form. However, the 

smaller perturbations have also been seen to grow. In the 

closed case (as shown in Fig. 4), the compact structures of 

various scales seem to be possible to be formed. 

Although the power spectrum has been and widely used tool 

for analysing large-scale structure in cosmology 

nowadays17, the method of directly analysing the 

perturbation wavefunction that we have used like the one in 

this paper has the advantages in terms of providing detailed 

spatial information, capturing nonlinear effects, specifying 

initial conditions, accessing higher-order statistics, 

facilitating observational modelling, and enabling a deeper 

physical interpretation of the underlying processes. These 

will be extended in future works. 
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