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Abstract: In this work, Markov Chain-Monte Carlo technique was used to study the phase transition in two and 

three dimensional Ising Model (IM) in a square and cubic lattice. The study of temperature dependence of average 

magnetization and specific heat in different magnetic fields has been carried out in the 3x3 and 3x3x3 lattice with 

periodic boundary. Critical temperature point ����
�

 for 2D and 3D Ising Model has been observed at around 2.2 and 

4.3 respectively at zero field. Our work satisfies Onsager’s critical value in 2D IM. The simulation suggests 

bifurcation in average magnetization below critical temperature 𝑇𝑇�. Temperature plays the role of increasing 

randomness of spins. We found that Ising Model in small lattice size still retains interesting features like 

spontaneous magnetization and symmetry breaking below 𝑇𝑇� at 𝐵𝐵 = 0. At a non-zero field, the likelihood of spins 

to prefer certain alignment depends on the direction of the external field and magnitude of magnetization depends 

on magnitude of field ±𝐵𝐵. Specific heat 𝐶𝐶�, which gives us fluctuation of energy at particular temperature, has been 

found to attain maximum value at critical regions. 
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Introduction 

Ising Model (IM) was a problem in 1D given by Whilhelm 

Lenz to his student Ernst Ising for his PhD thesis1, which 

was published in 1925. It was a simple statistical 

mechanical model to study phase transition (PhT) in 

ferromagnets with a one-dimensional chain of spins which 

are represented by either +1 or -1. Later, in 1943 Onsager2 

solved the two-dimensional ‘IM’ in zero field by using the 

theoretical technique of transfer matrix and group theory 

which explains the transition of magnetic properties of 

ferromagnet into paramagnet above critical temperature. 

Even nearly after a century, the model remains one among 

the few analytically solved statistical problems with its 

applications in wide disciplines of science. The toroidal 

topology of the 2D Ising Model with periodic boundary is 

shown in Figure 1 in which the spins are supposed to be 

situated in the vertices of the toroid. The red and blue 

arrows in loops represent periodic boundary conditions 

(PBC). The use of PBC is a heuristic approach towards 

making a lattice of infinite size.  

Phase transition is characterized by abrupt change in a 

physical quantity with small variation of parameter. Ising 

found no phase transition in one-dimensional ‘IM’ and 

concluded the similar expectation for higher dimensions. 

Later, Onsager2 found there exists phase transition in a
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two-dimensional model. Exact solution of higher 

dimensional ‘IM’ has remained an intractable problem for 

both physicists and mathematicians, although various 

approximation works have been done. In order to address 

this issue, a powerful algorithm has been developed, called 

Markov-Chain Monte Carlo simulation, whose results 

elegantly match with theory. 

 

 
Figure 1: Toroidal topology of 2D Ising Model3, arrows showing PBC. 
 
Ising model is a famous toy model originally developed to 

explain the phase transition in ferromagnets whose two 

dimensional analytic treatment is still under development. 

It has been subject of successive historical development 

following the proof of Peierls4, who verified the existence 

of phase transition in 2D. This work was followed by 

Kramers and Wannier5 to predict the critical temperature.     

Onsager solved the partition function problem and 

criticality2 of 2D IM, but did not explicitly mention the 

critical value. Huang6 calculated the critical point of 2D 

IM to be  ����
�

 = 2.269185. There are thousands of papers 

on ‘IM’ on the recent developments. The summary of 

findings of all historical progress in ‘IM’ can be found in 

the textbook of McCoy and Wu7. 

Varieties of simulation techniques have been developed to 

model physical processes and run it in computers. 

Metropolis algorithm8 is one standard method of drawing 

sample configuration of IM for particular temperature from 

random configuration of phase space. K. Binder9 has 

discussed application of Monte Carlo method to problems 

of statistical physics. The method makes use of Markov 

Chains to generate the desired sample. The algorithm 

makes a decision to accept or reject changes in spins based 

on a transition probability for the Markov chain such that it 

has a Boltzmann distribution. 

 

Hamiltonian of IM 

In this section, we will introduce the Hamiltonian of IM 

which will be used to compute energy and specific heat in 

our simulation work. It is also a prerequisite to formulate 

the partition function, which can be used to obtain any of 

the thermodynamic quantities theoretically. The critical 

point of 2D IM so obtained at zero field has been 

compared with results of our simulation. The Hamiltonian 

of IM (H), in general, depends on external magnetic field 𝐵𝐵 

and interaction strength J, where µ is the moment which 

represents the inherent strength of spins. 

𝐻𝐻 𝐻 𝐻𝐻𝐻𝐻𝐻 ∑ 𝑠𝑠��  - J∑ 𝑠𝑠�𝑠𝑠��,�      …..    (1) 

Where 𝑖𝑖 in first term runs over all spins and 𝑖𝑖𝑖 𝑖𝑖 in the 

second term run over non redundant pairs of neighboring 

spins. 

The first term in equation (1) addresses the self-energy of 

spins in presence of external field 𝐵𝐵. For 𝐵𝐵 > 0, the first 

term is negative for +1 spin and positive for -1 spin. This 

shows that +1 spin is biased for 𝐵𝐵 > 0, as it lowers the 

Hamiltonian. Similarly, for 𝐵𝐵 < 0, -1 spin is biased. 

Second term accounts for interaction between neighbors. J 

> 0; i.e. +ve J for ferromagnetic substance, assuring the 

same adjacent spins lowers the Hamiltonian of the system. 

J < 0 for anti-ferromagnetic substance, favoring the 

alignment of opposite spins in the neighbourhood. 

Although analytical solution of 2D Ising Model at zero   

field has been computed, the exact solution of 3D and 

higher dimensional IM does not exist till date and hence, 

Markov-Chain Monte Carlo (MCMC) simulation is 

considered a powerful technique to study phase transition 

of D ≥ 3 dimensional ‘IM’ model. Firstly, we will 

introduce the preliminaries of statistical mechanics that are 

essential before proceeding to 2D ‘IM’ and simulations. 

Our analysis of phase transition in 2D ‘IM’ requires 

concepts of partition function, Boltzmann probability and 

relative probability. 

Partition Function, Boltzmann Probability, and       

Relative Probability 

Partition function is a functional in statistical mechanics     

on which certain operations are done to get the value of   

physical observable. Partition function contains all the 
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information needed to recover the macroscopic properties 

of a thermodynamic system with a fixed number of 

particles immersed in a heatbath10,11. We will use the 

expression of partition function without details of 

formulation of canonical ensemble. 

Ƶ =∑ 𝑒𝑒�����   and  𝛽𝛽 = 1
𝑘𝑘𝐵𝐵𝑇𝑇      …..    (2) 

Where, 𝑘𝑘�  = Boltzmann Constant, 𝑇𝑇 = Absolute 

Temperature, 𝑖𝑖 = Possible Spin Configuration, 𝐻𝐻�  = 

Hamiltonian of state 𝑖𝑖. 

The Boltzmann probability which is the probability of 𝑖𝑖�� 

spin configuration is denoted by 𝑝𝑝�   and explicitly depends 

on Hamiltonian 𝐻𝐻�  and inverse temperature 𝛽𝛽. 

𝑝𝑝�  =   �
����

∑ ����
 =    �

����

Ƶ
        …..      (3) 

In Boltzmann probability, partition function ƶ appears as a 

normalizing factor to ensure probability sum to one. 

Relative probability is used to decide whether to accept or 

reject the sample of spin configuration, which will be used 

for simulation in our work. It is the ratio of Boltzmann 

probability of final state 𝑝𝑝�����  to initial state 𝑃𝑃������� in a 

transition. 

R = 
������

��������
 = 𝑒𝑒−𝛽𝛽𝛽𝛽𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑒𝑒−𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 = 𝑒𝑒����     … (4) 

Where ∆H = 𝐻𝐻�����  – 𝐻𝐻�������  = change in Hamiltonian. 

 

Methodology 

Theory 

In our work, we compute the three quantities: 

magnetization, specific heat and energy of selected 

samples for simulation. We use magnetization (M) to find 

the average of spins of the Ising System which ranges from 

-1 to +1. The value of magnetization is close to zero when 

spins are randomly arranged. A higher number of +1 spins 

compared to -1 spins shift M above zero whereas higher 

number -1 spins compared to +1 spins shift M below zero. 

The middle term in eq. (5) is used to compute the 

magnetization of the spin configuration in our work. The 

last term in eq. (5) is used for theoretical calculation of 

magnetization. 

M (𝑁𝑁, 𝑇𝑇, 𝜇𝜇𝐵𝐵) = < ∑ 𝑠𝑠�
�
��� > = 𝑘𝑘�𝑇𝑇 �

�Ƶ
 �
��

Ƶ    …    (5) 

Onsager performed the theoretical calculation of 

magnetization in the Ising Model. We compare this 

theoretical value of magnetization with the value of 

magnetization obtained through simulation technique. 

Energy is the average Hamiltonian of the Ising system and 

defined by equation (6). The middle term in Equation 6 has 

been used to calculate the energy of spin configuration in 

our work. Energy of the Ising system is governed by two 

terms. The first term with external field 𝐵𝐵 is the self-

energy term of spin when the spins experience field 𝐵𝐵. The 

later term which has coupler J incorporates interaction 

energy due to nearest neighboring spins. 

𝐸𝐸 = < −𝜇𝜇𝜇𝜇 ∑ 𝑠𝑠�� −  𝐽𝐽 ∑ 𝑠𝑠�𝑠𝑠��,� > = − ���Ƶ
��

        … (6) 

Specific heat 𝐶𝐶� is generally given by change in energy 

with change temperature. 

𝐶𝐶�  =  𝜕𝜕�
��

            … (7) 

According to the fluctuation dissipation theorem, specific 

heat 𝐶𝐶� can be expressed as, 

𝐶𝐶� = <𝐸𝐸2> − <𝐸𝐸>2 

���
           … (8) 

The behavior of phase transition can be explained by 

studying the variation of specific heat with     temperature. 

In our work, standard deviation of energy of thermalized 

samples of spin configuration has been used to calculate 

specific heat at particular temperature. This gives the 

fluctuation in energy of thermalized samples at 

corresponding temperature regimes. 

Onsager’s Results 

We will compare the phase transition as predicted   

theoretically by Onsager2 with our simulation work. 

Onsager found the value of critical point to be 2.269 

𝑘𝑘�𝑇𝑇�/𝐽𝐽. The magnetization at different ranges of   

temperature5 is given by, 

M (T)= �
                    0             ,             𝑇𝑇 > 𝑇𝑇𝑐𝑐

  {1 − [𝑠𝑠𝑠𝑠𝑠𝑠ℎ−4 2𝛽𝛽𝛽𝛽]
1
8 ,              𝑇𝑇 < 𝑇𝑇𝑐𝑐

�   …   (9) 

 

Where,  𝛽𝛽 = 1/𝑘𝑘�𝑇𝑇 and interaction energy constant 

𝜀𝜀 =1. 

Simulation Technique 

Markov Chain Monte Carlo Algorithm 

Monte Carlo method relies on use of random numbers and 

helps in probabilistic description of a problem. MCMC is a 
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sampling technique which leads us to desired phase space 

configuration corresponding to peak of distribution for a 

specific temperature. We will start with a random 

configuration and let the system evolve to a state of 

uniform energy that maximizes entropy. This process is 

called thermalization.    During the thermalization process, 

the transition takes place through a sequence of 

configuration states, and it produces a Markov Chain. The 

heart of this algorithm is in generating a random spin 

configuration with Boltzmann probability by making 

decisions to accept or reject random spin flips11. The loop 

shown in the flowchart of Figure 2 is implemented to 

generate a finite population of the representative 

configuration of spins in our lattice after certain nruns of 

thermalization, such that our samples attain stable values 

of magnetization for a particular temperature. 

We will take a finite size of square or cubic lattice with 

3x3 and 3x3x3 spins in a periodic boundary condition. We 

can either start with all spins down or all spins up or 

arbitrary spins. Hamiltonian and Magnetization of a spin 

configuration in a lattice is calculated. One of the spins is 

randomly flipped and a decision for accepting or rejecting 

the new spin configuration is performed based on 

Boltzmann Probability values of configuration. When the 

sequence of accepted configurations attain stable values of 

Hamiltonian, the samples are said to be thermalized. We 

will retain the history of Hamiltonian and Magnetization 

during nrun thermalizations which are done at constant 

temperature. Average of spin, standard deviation of 

Hamiltonian history and average of Hamiltonian history; 

only after 2000th thermalizations will be taken for 

computation of average magnetization, specific heat and 

energy. Then after, we will increase 𝑇𝑇 and repeat the 

procedure. We have set the values of parameters 𝑘𝑘�, 𝐽𝐽 and 

µ equal to 1 throughout the simulation. 

There are some limitations of the MCMC method. The 

computers generate pseudo-random numbers and the 

simulation lacks perfect randomness. It is necessary to take 

finite lattice size for computation and simulate the system 

for finite observation time. Statistical errors arise due to 

such limitations. 

 
Figure 2: Flow-chart for MCMC thermalization. 

 

Markov Chain Monte-Carlo algorithm is implemented in 

following steps: 

1. Starting with arbitrary spin configuration  

Uk = {s1, s2, ……………, sN } 

2. Generating a trial configuration Uk+1 by picking a 

random spin si and flipping it 𝑠𝑠�  ↦ − 𝑠𝑠� 
3. Calculating Hamiltonian of trial configuration Htrial. 

If Htrial ≤ HSk, accepting trial by setting  

Uk+1 = Utrial 

If Htrial ˃ HSk, accepting with relative probability  

R = e−∆E/kBT 

4. Choosing uniform random number 0 ≤ ri ≤ 1 

Accepting if R ≥ ri by setting Uk+1 = Utrial 

Rejecting if R ˂ ri i.e. Uk+1 = Uk 

 

Results and Discussion 

Simulation in 2D IM 

Although the lattice size is very small (3x3), it has been 

found to retain features of phase transition. Thermalization 

of Ising Model in 2D for higher lattice size of 15x15 and 

20x20 in figures 3 and figure 4 show that magnetization 

has been settled after a certain number of nruns. 

Thermalization in 2D IM 

Thermalization is the transition of arbitrary spin 

configuration towards a state with uniform energy for a 

particular temperature. We initialize the thermalization 
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algorithm with two types of configuration, first cold start 

(initialization with all spins +1) which is represented by 

black color, and hot start (with random spin configuration) 

, for which average magnetization begins with arbitrary 

values around zero as shown in the green color of figure 3. 

Only the thermalized samples will be considered for 

computation of thermodynamic quantities of interest. 

 

 
Figure 3: Thermalization in 2D IM (a) for lattice size L = 20 and (b) 

for lattice size L = 15 respectively.  For both lattice size, 

thermalization was done at T = 6 J/kB and field B = 0. 

 

Figure 3(a) and 3(b) show the thermalization for two 

dimensional IM with lattice size of 20x20 and 15x15 

respectively at temperature T = 6 𝐽𝐽𝐽𝐽𝐽�  and field 𝐵𝐵 = 0. The 

evolution of the average magnetization in this case settles 

down to zero over 1500th nruns as shown in figure 3(a) and 

3(b). Figures 4(a) and 4(b) show the thermalization at 

temperature T = 5 J/𝑘𝑘�  and field 𝐵𝐵 = 1 for two dimensional 

lattice with lattice size of 20x20 and 15x15 respectively. 

We will plot the average of magnetization of such 

thermalized samples for discrete temperature points in the 

plot of magnetization as a function of temperature. We can 

observe the magnetization settles down after about 1500th 

runs of thermalization. To be sure that the sample we are 

taking represents a thermalized sample, we take samples 

2000th nruns onwards for computation. 

 

 
Figure 4: In 2D IM at B = 1, the thermalization at T = 5 J/KB (a) for 

lattice size L = 20 and (b) for lattice size L = 15 respectively. 

 

Findings of PhT in 2D IM 

Bifurcation in magnetization below 𝑇𝑇� shows symmetry 

breaking in the zero field at a low temperature region. 

Spontaneous magnetization has been observed below 𝑇𝑇� in 

absence of external field, with equal tendency to align in 

either +1 or -1 alignment of spins in 2D ‘IM’ model.  

Average magnetization shows a reflection symmetry along 

𝐵𝐵 = 0 for curves of ±𝐵𝐵. A hump has been observed in 

specific heat of 2D IM near critical temperature for every 

field. At external magnetic field B = 0, logarithmic 

divergence at critical temperature has been observed where 

specific heat theoretically fails to be an analytic function of 

temperature7 as shown in figure 5(b). In figure 5(a), the 

vertical red dotted line represents the critical temperature 

𝑇𝑇�  = 2.269 𝐽𝐽𝐽𝐽𝐽�  and the red scatter plot below 𝑇𝑇� = 2.269 

represents magnetization obtained through Huang’s 

theoretical prediction. Critical temperature obtained from 
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Figure 5: In 2D IM, at B = 0 (a) the temperature dependence of average 
magnetization and (b) the temperature      dependence of specific heat. 
 

 
Figure 6: (a) The temperature dependence of average magnetization 

and (b) the temperature dependence of specific heat in 2D IM at 

different fields. 

 

simulation is around Tc = 2.2 𝐽𝐽𝐽𝐽𝐽�  consistent with 

Onsager’s critical temperature of 𝑇𝑇� = 2.269 𝐽𝐽𝐽𝐽𝐽�. The 

hump of specific heat in figure 5 (b) has been observed 

behind the theoretical critical temperature represented by a 

vertical red dashed line.  

Figures 6(a) and 6(b) show the average magnetization 

and specific heat at different external fields in 2D IM. 

Simulation in 3D IM 

27 spins were put in a 3x3x3 lattice with periodic boundary 

and thermalization was initiated. The figures 7(a) and 7(b) 

show that magnetization has been settled after 1500th nruns 

in thermalization of 3D Ising Model. 

 

 
Figure 7: Thermalization at T = 5 J/KB, B = 1 for lattice size (a) L = 

5 and (b) L = 3 in 3D IM. 

 

Thermalizaton in 3D IM 

Like in 2D simulation, we initialize the thermalization 

algorithm with cold start and hot start, and plot the 

evolution of magnetization at different runs through the 

Markov chain. Only the thermalized samples will be 

considered for computation of thermodynamic quantities of 

interest. 

Figures 7(a) and 7(b) show the thermalization for three 

dimensional lattice with lattice size of 5x5x5 and 3x3x3 

respectively at temperature T = 5 J/kB and field B = 1. 

Black curve represents initialization with cold spin 
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configuration whereas green represents initialization with 

hot start configuration. We can observe the magnetization 

settles down at about 1500th thermalization in L = 5 and 

200th thermalization in L = 3. To be sure that the sample 

we are taking represents a thermalized sample, we have 

taken samples 2000th nrun onwards for computation. 

 

Findings of PhT in 3D IM 

In 3D IM, the simulation suggests critical temperature 

around Tc = 4.3 J/KB which is shown in figure 8(a) and 

8(b). It predicts specific heat increases on increasing 

temperature below Tc, falls down right after critical point 

and then attains nearly constant value on increasing 

temperature at B = 0 as observed in figure 8 (b).  

 

 
Figure 8: In 3D IM, at B = 0 (a) the temperature dependence of 

average magnetization and (b) the temperature  dependence of specific 

heat. 

 

A prominent hump has been observed in specific heat of 

3D ‘IM’. The hump at zero field represents the critical 

temperature below which symmetry breaking has been 

observed in magnetization. Spontaneous magnetization has 

been observed below Tc in absence of an external field, 

with equal tendency to align in either +1 or -1 alignment. 

Average magnetization at a non-zero field shows a 

reflection symmetry along a line at B = 0 for curves of ±B 

like in 2D. 

 
Figure 9: (a) The temperature dependence of average magnetization 

in 3D IM at different fields and (b) the temperature dependence of           

specific heat in 3D IM at different fields. 

 

Figures 9(a) and 9(b) show the evolution of average 

magnetization at different fields on increasing 

temperature.  

 

Comparison of PhT in 2D and 3D IM 

The 3D model shows qualitatively the same results as the 

2D model. We found IM in small lattice size of 3x3 and 

3x3x3 still retains features of phase transition. Our critical 

point satisfies Onsager’s critical value in 2D ‘IM’ at zero 

field. The simulation suggests bifurcation in average 

magnetization below critical temperature Tc in both 2D and 

3D IM. This means there are two equally likely states of 

spin configuration below critical temperature. Increasing 

temperature has been found to contribute towards 
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increasing randomness of spins. This conclusion could be 

drawn from the inclination of magnetization towards zero 

at higher temperature. It has been found that ‘IM’ exhibits 

interesting properties like spontaneous magnetization and 

symmetry breaking below Tc at 𝐵𝐵 = 0. The specific heat, 

which is the measure of energy fluctuation at a certain 

temperature, has been found to attain hump at the critical 

region. The scatter points of specific heat Cv are found to  

 

 
Figure 10: The temperature dependence of average magnetization 

(black), specific heat (blue) and energy (red) at zero field for 2D and 

3D IM. (a) the vertical blue dashed line represents Onsager’s critical 

point Tc = 2.269 kBTc/J in 2D and (b), the vertical blue dashed line 

represents critical point obtained from simulation in 3D IM. 

 

overlap for external fields ±𝐵𝐵. Evolution of specific heat 

starts from zero at regime below Tc and grows to peak 

value at critical point. Specific heat lowers above critical 

point Tc and then attains a stable value as shown in blue 

scatter plot of figure 10(a) and 10(b). The fluctuation of 

energy of thermalized samples has increased on increasing 

magnitude of external field below critical temperature. 

 

Conclusion 

In simulation of phase transition of 2D and 3D Ising 

system, the bifurcation of magnetization below 𝑇𝑇� at zero 

field shows that there are two equally possible states of 

configuration of spins ( either all spins +1 or  all spins -1) 

in regions below critical temperature. Above critical 

temperature, either of the state collapse to a single state 

with random spin configuration in a system. In such a 

random spin configuration, the average magnetization 

takes values around zero due to the nearly equal number of 

+1 and -1 spins in the Ising system. This physically 

signifies the loss in magnetic property above critical 

temperature. Bifurcation of magnetization shows that the 

PhT in Ising model in 2D and higher dimensions exhibits 

the property of symmetry breaking. As the magnetization 

is significant in absence of an external field below 𝑇𝑇� , this 

phenomenon has been attributed as spontaneous 

magnetization. At a non-zero field, the likelihood of spins 

to prefer certain alignment depends on the direction of the 

external field and magnitude of magnetization depends on 

magnitude of field ±B. Temperature plays the role of 

increasing randomness of spins. 

The plot of specific heat Cv as a function of temperature 

exhibits characteristic hump near critical regions. This 

shows that the fluctuation of energy in the Ising system is 

maximum in the region of phase transition. Our simulation 

observed in a small finite lattice of 2D has shown hump 

behind the theoretical critical point obtained by Onsager. 

On increasing the value of the external field, the hump of 

specific heat has shifted towards higher temperature. At 

extremely high temperature scales above criticality, it has 

been observed that the value of specific heat Cv attains 

constant values. In other words, as an effect of higher field, 

criticality has been delayed at evolving temperature 

regimes, followed by delayed stability of Cv over evolving 

temperature scales. The pattern of rise and fall observed in 

Cv has been found to be dependent on the region of 

evolving temperature scale, separated by critical point Tc. 

This phenomenon is prominent both in 2D and 3D. 
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