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Abstract: In this work both linear and nonlinear advection-diffusion equations are considered and discussed their analytical 

solutions with different initial and boundary conditions. The work of Ogata and Banks, Harleman and Rumer, Cleary and 

Adrian, Atul Kumar et al., Mojtabi and Deville are reviewed for linear advection-diffusion equations and for nonlinear, we 

have chosen the work of Sakai and Kimura. Some enthusiastic functions used in the articles, drawbacks and applications 

of the results are discussed. Reduction of the advection-diffusion equations into diffusion equations make the governing 

equation solvable by using integral transform method for analytical solution. For nonlinear advection-diffusion equations, 

the Cole-Hopf transformation is used to reduce into the diffusion equation. Different dispersion phenomena in atmosphere, 

surface and subsurface area are outlined. 
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Introduction 

Adolf Fick described the law of diffusion and derived the 

differential equation , where k is diffusivity, 

y = f(x, t) is a function of two independent variables x and 

t. Advection diffusion equation (ADE) was developed later, 

by adding the advection term on it. ADE describes the 

transport of solute particles, energy or other physical 

quantities due to flow of fluid which induces fluxes of 

energy and matter. Advection is due to ambient flow of 

matter or energy and diffusion is due to random motion of 

the particles which occurs even if the fluid is at rest and net 

transport takes place under certain conditions. ADE 

represents the condition when both diffusion and advection 

(or convection) take place simultaneously8.  Mixing of fluid 

and pollutant in the river, adding more smokes in air, issues 

of climate change and use of advanced computers for 

simulation of real world problems increases the importance 

of ADE in recent and active research area. One dimensional 

linear ADE is comparatively easy to solve and realistic 

result is obtained in most of the cases. In the study of the 

transport of dissolve particles with fluctuated velocity 

especially when the flow rate is very low and for the area 

which is more polluted, ADE plays an important role. ADE 

also helps to describe ecosystem in certain area and in the 

modeling of many biological processes. ADE is used to 

study the transient mass transfer phenomena occurring in 

natural as well as artificial systems and helps to study the 

problems related to the movement of diffusible particles, 

ions, chemicals etc. So, ADE is an important tool to 

understand, solve and describe the real world problems with 

physical phenomena9
. 
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Ogata and Banks6 and Harleman and Rumer3 have used 

ADE to study the dispersion in porous media. Cleary and 

Adrian2 have applied ADE to study dispersion of cation in 

soil column. Atul Kumar et al.4 have used ADE to study 

river pollutions and transport of chemicals in subsurface 

areas with low diffusivity. Atul Kumar et al. have discussed 

the relationship between diffusivity and seepage velocity. 

Abdelkadir and Michel5 has decomposed the equation into 

advection and diffusion and solved them separately. 

Harleman and Rumer3, have used a different idea to 

calculate longitudinal and lateral dispersion separately. 

Sakai and Kimura have taken nonlinear advection equation 

and reduced it into linear diffusion equation by using Cole-

Hopf transformation. Distortion occurs in the signal while 

propagating in case of nonlinear ADE. Shocking and 

rarefaction effect is the work of uux which causes distortion.

Governing equation and solutions 

Dispersion in porous medium 

Ogata and Bank6 have taken the ADE as a governing  

                          1) 

equation where, C is concentration, u constant advective 

velocity, D is diffusion or dispersion coefficient and initial 

concentration is considered as C0. By introducing new 

variable, the ADE is reduced into the diffusion equation 

and 

which is  

×

                                 (2) 

Where,  and  6. This solution is further 

simplified and expressed in the form of error function which 

is    

                                                                              3)

If  and , two dimensionless quantities are 

introduced the solution reduces to 

       4)  

It is claimed that the solution does not work for all 

conditions6. If the boundaries are symmetrical or is nearly 

zero in the Fgure 1, only first term of equation (4) gives the 

correct result. The second term is used for general type of 

problems having asymmetrical boundary conditions or 

becomes large as shown in Figure 1.  

When the second term is included, error up to five percent 

occurs for general type of problems. So the major focus is 

applied to find out the influence of the second term. Taking 

it as a single function and using the method of maxima and 

minima value of is calculated. The conclusion is that the 

second term becomes most significant when = 1. But 

when we use = 1 in equation (4) we get: 

= ½ [1 + second term]   . (5)  

which clearly tells that the second term is most significant 

when = 1 which can be stated without doing the process 

of maxima and minima. It is not possible to repeat the 

experiment mentioned in the article but the authors have 

reported that when diffusivity ranges from 10-4 cm2/sec to 

10 2 cm2/sec then the diffusivity is proportional to velocity. 

It is also mentioned that for the values of D/ux =  < 0.002 

a maximum error of less than 3 percent occurs when the 

second term is neglected. Figure 1 shows that the condition 

approaches towards symmetry as  06. Harleman and 

Rumer3 have taken two dimensional ADE with 

unidirectional flow which is 

    6) 

Where,  and   are longitudinal and lateral dispersion 

respectively with advective velocity u. It is assumed that the 

flow is steady and no dispersion in y direction to 

calculate . The solution obtained is same as (4). For the 

case of lateral dispersion it is assumed that   then 

the equation is reduces to                      .... (7) 

This equation (7) is solved by using Fourier transform 

method and the solution is verified by using experimental 

method. 
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Figure 1: Concentration distribution as per variation of  from 0.05 to 

100. 

In this article Harleman and Rumer3 have explained a very 

sophisticated experiment performed at the Hydrodynamics

laboratory of Massachusettes Institute of Technology in 

which particles of different shape and size with varying

pore system is considered. We have no alternative except to

accept the result as reported. This article also mentioned the

result of Scheidegger3 which tells that the dispersion is

related to pore system geometry and seepage velocity which

can be written as: 

D1 = 1|u| and D2 = 2|u| 

where, 1 and 2 are constant of proportionality and |u| is

seepage velocity3. Depending upon the pore-system 

geometry, 1 is proportional to the average grain size of the

porous medium and the relation established by Raimondi et

al.  and Mehlhorn3  states that 1 = , where d is average 

grain size and  is constant of proportionality. 

Substituting this value of 1 and dividing both side by 

kinematic  

                         (8)

where,   is Reynolds number. There is no further 

discussion about this result but another similar result of 

Harleman, Mehlhorn and Rumer3 is taken, which is  

 and          

Here 1 is as  in the equation (8) and both 1 and n1 are

independent of particle size for nearly uniform media. 

                                                (10)  

From experiment it is established that the value of n1 is 1.2 

and may approach 1 for highly non-uniform media. So we 

can say that 1 < n1 < 1.2. But nothing is mentioned about n2 

which is related to lateral dispersion. It is not explained how 

n2 differs with n1 and if they are identical we cannot 

calculate the Reynolds number. Major findings of this 

article are 

   and      which implies 

 . For a porous medium when ,  

and when ,  which shows that the ratio 

increases with increase in R. From the relation R = u  

where both, average grain size (d) and viscosity ( ) are 

constant so R  u. This shows that the ratio increases with 

increase in seepage velocity but not justified for Reynolds 

number greater than 10. According to Bischoff and 

 range and into the 

nonlinear range, then as n1 decreases, n2 increases. This 

transition is not well established experimentally. Finally 

equation (9) is valid for laminar flow when the order of R is 

above 10 3. The ratio D1/D2 depends upon the absolute 

magnitude of the seepage velocity. Effect of non-

homogeneity of the media and density is not discussed3.  

Adsorption of cation in soil column  

Cleary and Adrian2 used one dimensional ADE to study the 

flow of cation solution through soils where linear 

equilibrium exists between cation in the flowing solution 

and the cation adsorbed on the exchanger phase. The 

equation considered in this case is 

                        (11) 

Here, C is concentration of the adsorbate, V0 is the average 

velocity, Z is longitudinal dimension along the direction of 

flow, D0 is dispersion coefficient, is bulk density,  is pore 

fraction and S is the amount of adsorbate adsorbed per unit 

weight of the exchanger. One more term   is used 

to indicate the effect of density and pore fraction. 

Substituting X = C/C0 and Y = S/Q equation (11) is reduced 

into:  
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                                               12) 

where, 

      and            (13)

and the boundary conditions are X = 1 at Z = 0, = 0 

at Z = L and X = 0 at t = 0 in 0 Z L. Equation (12) is 

solved by using integral transform method after reducing it 

into diffusion equation and the analytical solution is 

expressed in terms of eigenvalues which is 

 

 

exp ,        (14)

where, the eigenvalues  are the positive roots of 

. This solution (14) is used to 

analyze the dispersion of cation in soil column. Using the 

data from Lai and Jurinak, cation concentration at different 

depth and time is shown in Figure 2, which shows that the 

depth covered by cation before reaching steady state is 

directly proportional to the time if concentration is kept 

constant2.  

Time dependent and spatial dependent dispersion

Atul Kumar et al.4 have studied one dimensional ADE, for 

two types of solute dispersion problems in a longitudinal

finite domain. The equation taken is 

                           15)

where, C is concentration, D is dispersion, x spatial 

position, t is time and u(x, t) is medium flow velocity. To 

indicate the change in dispersion with time we consider 

 and where, is initial 

dispersion and  is initial velocity.  

The first case is time dependent solute dispersion along 

uniform flow and the second is spatial dependent solute 

dispersion along non-uniform flow. Both the problems 

contain uniform type of input and increasing nature of input. 

To indicate the change in dispersion and length a non-

dimensional variable is taken where the unit of m is 

reciprocal of time. 

 

             16) 

 

Figure 2: Cation concentration distribution for different time. 

To use the Laplace transform technique conveniently a new 

independent variable X is introduced which is 

or            .                      (17)            

Again to get rid of the time dependent coefficient another 

transformation is used which is 

       or                      (18) 

To vary the velocity by a small amount from u0 at x = 0 to 

  at x = L where, b = ax for a real 

constant b is used. Similarly to represent the variation in 

dispersion  is used. Input 

concentration at the origin is assumed as C0 and flux type 

homogeneous condition at the other end of the domain 

where x = L is used. For spatially dependent dispersion 

along non-uniform flow a new variable is introduced for 

transformation. 
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                        19)  

Again to reduce into PDE with constant coefficient the 

variable used is Z = logaX = log (1+ax). These functions 

we have discussed are used to reduce the ADE into standard 

form then after the solution for all cases is written directly 

from Van Genuchten and Alves10. For increasing and 

decreasing nature of input  and 

are used respectively 4.  

Distance up to 1 km, time up to 1 year, C0 = 1, u0 = 0.11

km/year and D0 = 0.21 km2/year is taken. In the article it is 

explained that if the input is uniform, the concentration

value is lower for comparing with 

 and the difference between two lines 

increases gradually in the domain. Again for increasing

nature of input concentration up to 0.4 km is lower for

and the trend reverses after that point.

When the anlaytical and numerical values are compared,

numerical value seems slightly higher near the source and 

trend reverses after 0.2 km approximately. The process of 

decaying of concentration is slower when dispersion is 

directly proportional to velocity and faster when the 

dispersion is proportional to the square of the velocity. The 

result is useful to predict the level of pollution at a particular 

point, to measure the water quality in subsurface areas and 

to calculate the atmospheric pollution4.  

Analytical solution after breaking into two parts  

Mojtabi and Deville 5 solved one dimensional ADE with 

homogeneous boundary conditions which is 

 20)

In this case the finite domain is 1 < x < 1 and total time is 

T. Where, u is velocity variable, c > 0 is the constant

advection velocity,  is the kinematic viscosity, t is time and 

the homogeneous Dirichlet boundary condition is u( 1, t) = 

u(1, t) = 0. The initial function chosen is - sin ( ) and the 

domain is 1 < x < 1. These boundary conditions are used 
1. The ADE is 

first reduced into diffusion equation and solved by using 

variable separation method. The solution obtained in this 

case contains the term (0 ) for vanishing viscosity which 

makes the solution stiffer to calculate. Then variable 

separation method is left and the problem is decomposed 

into two parts advection and diffusion to solve them 

separately. After combining the final solution obtained is5 

 

                                                                (21) 

Burgers equation: nonlinear advection diffusion 

equation 

Sakai and Kimura7  

nonlinear ADE which is formed after combining the 

nonlinear wave motion and linear diffusion term, which is  

  (22) 

where, u  is diffusivity. First the 

equation (22) is reduced into diffusion equation by using 

Cole-Hopf transformation which is  

This transformation reduces the equation (22) into diffusion 

equation which is 

 

Then this equation is solved by using Fourier series method 

and the solution in the form of infinite exponential series 

under the sign of integration is 

 

         (23) 

Besides usual notations t and t are old and new time 

respectively,  is viscosity and . The major part 

of this article is that the mathematical formulation of two 

dimensional Cole-Hopf transformation is described in 

detail. Then after two-dimensional nonlinear ADE is solved 

similarly as in case of one dimension7.  
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Conclusion 

The articles we reviewed include both linear and nonlinear

types of ADE. All analytical solution are obtained by 

reducing linear ADEs to diffusion equations except Ogata 

and Banks. The solution by Ogata and Banks6, expressed in 

terms of error function consists of two terms in which the 

first term is relevant for symmetrical boundary conditions. 

Inclusion of second term gives error up to five percent for 

general type of problems. Harleman and Rumer3 have 

explained a method to calculate Reynolds number by using 

the ratio of longitudinal and lateral dispersion. The result 

explained that the ratio of dispersion increases with increase 

in seepage velocity for Reynolds number less than 10 and 

not experimentally justified for greater than 10. Cleary and 

Adrian2 have used the result to explain the cation 

concentration at different time and depth and concluded that 

if input is given for a longer time, the dcation travel more 

distance before reaching the steady state. Atul Kumar et al.4

have used two suitable functions   and  

to indicate small amount of change which is better to study 

ADE. Abdelkadir and Michel5 have explained the idea to 

solve ADE after breaking into two parts, which gives 

similar result as Fourier solution. Sakai and Kimura7 have 

used the Cole-Hopf transformation to reduce the nonlinear 

ADE into diffusion equation and solved the equation in one 

and two dimension. 
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