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Abstract 
The role of alien invasive plants on the interaction between native plants and soil has been a critical concern 

for understanding invasion mechanism and response of native plants towards invasion. This study aims to 

analyze the effect of invaded soils by an invasive Siam weed (Chromolaena odorata (L.) R.M. King & H. 

Rob.) under sterilized and unsterilized conditions on growth performance of seedlings of a valuable native Sal 

tree (Shorea robusta Gaertn. f.). For the analysis, seedlings of S. robusta were grown in pots and growth 

parameters were measured. Results showed that the C. odorata invaded soil reduces the root biomass, leaf 

length and leaf breadth of S. robusta seedlings. Sterilization of the invaded increased root and shoot and leaf 

size of the seedlings. In conclusion, soil sterilization can promote early-stage growth for S. robusta seedlings, 

adjusting with altering the shape and size of leaves in response to invasion. This suggests that soil microbes 

play an important role in negatively impacting native plants with invasion of C. odorata. 
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Introduction 
Chromolaena odorata (L.) R.M. King & H. Rob. is 

one among the worst invasive alien species 

aggressively growing throughout tropical and 

subtropical regions in the countries of Old world 

(Zachariades et al., 2009). It has invaded a wide range 

of habitats including roadsides, agricultural fields, 

disturbed grasslands, forests, and abandoned fields 

resulting in significant economic and biodiversity 

losses (Rusdy, 2016; Shrestha, 2019). 

This plant is known to alter native plant 

communities and suppress the germination, growth 

and development of several native plants (De Rouw, 

1991; Uwalaka and Muoghalu 2021; Poudelet al., 

2024). These negative impacts are further intensified 

by the alteration of soil properties and microbial 

interactions by the invasion of this weed (Tiébré and 

Gnanazan, 2018; Zhang et al., 2024). In Nepal, 

tropical Sal (Shorea robusta Gaertn. f.) forest have 

been severely impacted by C. odorata invasion, 

threatening this vital ecosystem (Thapa et al., 2016; 

Bhatta et al., 2020).  

Field studies highlighted adverse impacts of C. 

odorata on native species composition or seedling 

regeneration (Thapa et al., 2016; Gbètoho et al., 

2018). And, experiments to evaluate potential 

allelopathic impactof C. odorata on seed germination 

and seedling growth of native wild or crop plants 

have used extracts of most commonly leaves (Julio et 

al., 2019; Poudel et al., 2024). Still, there has been 

limited studies on evaluating potential effects of 

invasion of this weed, especially by growing native 
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seedlings in both weed invaded and uninvaded soil to 

observe how the seedlings respond invasion. Such 

method closely simulates natural condition and may 

help to better understand the real impact of invasion. 

The natural environment is a multifaceted 

system, where complex interactions exist among 

plant-soil and microbes including invasions (Rai, 

2015). This make difficult to predict how these 

factors interact and influence each other. Though 

challenging, include or include microbes in 

experimental design helps to explain their role in 

native and invasive plant interactions. Excluding 

them allows observation of how their absence affect 

plant competition and including them exposes their 

beneficial or harmful impact on plant growth, nutrient 

cycling, and competition (Kumar and Verma, 2018). 

One option of exclusion of microbes in pot 

experiments is soil sterilization (Cortois et al., 2016). 

This study aims to analyze the effect of C. odorata 

invaded soil on growth and development of native S. 

robusta seedlings. Simultaneously, the study 

evaluates whether soil sterilization could reduce any 

potential toxic effects of the invaded soil on seedling 

growth. 
 

Materials and methods 
Seed and soil collection 

Seeds of S. robusta and invaded and uninvaded soils 

were collected from Indreni Community Forest of 

Chitwan district, Bagmati Province, Nepal 

(84°28'16''E, 27°44'65''N, elevation 220-290 m asl) 

during July 2020. The seeds, which were freshly 

dropped on the ground from mother tree (S. robusta) 

and homogeneous in size, were collected. The seeds 

were transported to the laboratory and sown in pots 

prepared.  

Invaded soil was collected from C. odorata 

invaded site (cover >50%) and uninvaded soil was 

collected from the site where C. odorata was absent 

from the depth 0-15 cm by removing surface litters 

and debris. The seed and soil samples were 

transported to the laboratory.  
 

Seedling preparation, soil sterilization and pot 

experiment 

Wings of the seeds were removed and the seeds were 

washed by distilled water and treated with the 

insecticide Carbine (10 mL per 100 mL of water) to 

protect seeds from being destroyed by pests. The 

seeds were spread on moist muslin cloth on a tray in 

dark to allow germination. The soaked seeds started 

to germinate after 5th days of soaking.  

 

 

The polyethylene pots of size 14 cm diameter 

and 26 cm height were filled with the collected soil 

samples from the field. One thousand and five 

hundred grams of each invaded and uninvaded soils 

were kept in each pot separately. One set of each 

invaded and uninvaded soils samples were sterilized 

and another set was unsterilized. For the sterilization, 

soils were autoclaved at 121℃ for 35 minutes. 

The germinated seeds of S. robusta, (having 

radicle length 1 cm) were transplanted to the pots 

containing respective soils (inserting the radicle into 

moist soil) and allowed to grow into seedlings. The 

seedlings were exposed to altogether four treatments 

(i) uninvaded unsterilized soil (ii) uninvaded 

sterilized soil (iii) invaded unsterilized soil (iv) 

invaded sterilized soil. There were 10 replicated plots 

for each treatment and each pot contained a single 

seedling. The pots were kept in greenhouse of Central 

Department of Botany, Tribhuvan University, 

Kirtipur, Kathmandu, Nepal. The temperature and 

humidity were recorded from 17°C to 45°C and 40% 

to 80%, respectively during the period of experiment. 

The pots were randomized in each alternate day to 

minimize the positional effect. 

In each sterilized and unsterilized pot, 20 mL of 

distilled water was poured daily.  
 

Measuring parameters 

The seedlings were harvested on 86th days after 

transplantation of germinating seeds into pots. Shoot 

length and biomass, root length and biomass, leaf size 

(lamina length and breadth) were measured. Leaf 

lamina length was measured from the base of the 

lamina to the leaf tip and breadth was measured from 

the widest middle part of the blade. The root samples 

were washed to remove adhered soil particles. After 

that, the root and shoot were dried in hot air oven at 

80°C for 72 hours for measuring biomass. The shoot 

biomass included the leaves. 
 

Statistical analysis 

The growth parameters of S. robusta, including 

shoot and root length, shoot and root biomass, leaf 

size (length and breadth), root to shoot and leaf length 

to breadth ratios were analyzed using a Two- way 

Analysis of Variance (ANOVA) to evaluate the effect 

of soil type, soil sterilization and their interaction. 

Root length and shoot biomass data were log-

transformed as the data were not normally 

distributed. Statistical significance was considered at 

a significance level of p<0.05. The data were 

analyzed using the software R (R Core Team, 2023). 
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Results 

Root and shoot length 

Analysis of root length revealed a significant effect 

of soil sterilization (P=0.050) and interaction 

between sterilization and soil type (P =0.026) (Table 

1). Roots were longer in sterile invaded soil, while the 

root length was similar in both sterile and unsterile 

uninvaded soils (P = 0.523, Table 1, Fig. 1). 

Similarly, shoots of seedlings varied with soil 

sterilization (P=0.002, Table 1). Shoots were longer 

in sterilized soil condition (Fig. 1). Effect of soil type 

and interaction of soil type and sterilization did not 

show significant impact on shoot length (P > 0.05, 

Table 1). 
 

Leaf length and breadth 
Both soil type and sterilization showed significant 

change in leaf length (lamina) of S. robusta (P=0.020 

and P < 0.001, respectively) but their interaction did 

not show the change in leaf length (P = 0.894) (Table 

1). Leaves were longer in the sterile soil in both 

invaded and uninvaded soils (Fig. 3). Soil type had 

no effect on leaf breadth (P = 0.069), however, 

sterilization and interaction of soil type and 

sterilization showed significant change in the breadth 

(P < 0.001 and P = 0.013, respectively, Table 1). Leaf 

breadth was narrow in case of unsterile invaded soil 

(Fig. 3). 
 

 
Figure 1. Effect of soil type and sterilization on root and 

shoot length of S. robusta. Bar graph shows the mean 

value ± standard error. 
 

Root and shoot biomass 

Root biomass of S. robusta differed significantly with 

soil type and interaction of soil type and sterilization 

(P = 0.046) but sterilization effect on the biomass was 

not significant (P = 0.329, Table 1). In unsterile  

 

 

 

 

 

condition, the root biomass was high in uninvaded 

soil, while the biomass was high in the sterile invaded 

soil than unsterile invaded soil (Fig. 2). Shoot 

biomass did not show variation due to soil type, 

sterilization and their interactions (P > 0.05, Table 1). 
 

 

Figure 2. Effect of soil type and sterilization onroot and 

shoot biomass of S. robusta. Bar graph shows the mean 

value ± standard error. 
 

 
Figure 3. Effect of soil type and sterilization on leaf 

length and leaf breadth. Bar graph shows the mean value 

± standard error. 
 

Root to shoot and leaf length to breadth ratios 

Root to shoot ratio of S. robusta seedlings showed no 

variations due to soil type, sterilization and their 

interaction (P > 0.05, Table 3). Leaf length to breadth 

ratio varied with soil type (P = 0.002) but not due to 

sterilization and interaction of soil type and 

sterilization (P > 0.05, Table 1). The invaded soil 

reduced the leaf length to breadth ratio in both 

sterilized and unsterilized soils (Fig. 4). 
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Table 1. Two-way ANOVA results on the effect of soil type, sterilization and their interaction on S. robusta 

seedling growth parameters 

  df 

P values 

Length 

 

breadth  Biomass  Ratio 

Root Shoot Leaf Leaf Root Shoot R:S LL:LW 

Soil  

1 

0.523 0.377 0.020 0.069 0.046 0.125 0.530 0.002 

Sterilization 0.050 0.002 <0.001 <0.001 0.329 0.153 0.777 0.344 

Soil × sterilization 0.026 0.141 0.894 0.013 0.046 0.466 0.588 0.067 

Boldface are the significant values. R : S = root to shoot ratio, LL:LW = leaf length to breadthratio 
 

 

 
Figure 4. Effect of soil type and sterilization on root to 

shoot and leaf length to breadth ratios. Bar graph shows 

the mean value ± standard error. 

 

Discussion 

This study analyzed the effect of C. odorata invaded 

soil and its sterilization on growth and development 

of native S. robusta seedlings, comparing the growth 

parameters with uninvaded and unsterile soils. The 

toxic effect of invaded unsterile soil is evident in the 

reduced root biomass and smaller leaf size observed 

in S. robusta seedlings (Fig. 3 and 4). This suggests 

that the invasive C. odorata contributes detrimental 

residues for native species in its invaded sites. 

Previous studies have identified several 

allelochemicals from C. odorata such as phenolic and 

flavonoid compounds that impairs growth and 

development of native species (Thapa et al., 2021; 

Budha Magar et al., 2023). Additionally, detrimental 

impact on native plants is due to alteration in soil 

qualities and microbial communities (Tondoh et al., 

2013; Koné et al., 2021). 

Results also showed that there was no 

significant difference in both root and shoot length 

due to soil type (invaded and uninvaded) but soil 

sterilization significantly changed the root and shoot 

length of S. robusta (Table 1). Shoots are likely to be 

longer in both invaded and uninvaded soil after 

sterilization, while roots are likely to increase in 

length, especially in sterilized invaded soil (Fig. 1). 

Sterilization effect was also found to be significant on 

the leaf expansion with increased leaf length and 

breadth under sterilized soils (Fig. 3). As indicated by 

increased root and shoot length, soil sterilization 

stimulated root and shoot elongation as well as leaf 

expansion. 

Soil sterilization eliminates both the useful and 

harmful microbes present in soil. Such negative 

effects have some consequences on the growing 

seedling development. Beneficial microbes, such as 

nitrogen-fixing bacteria or mycorrhizal fungi, help 

plants access nutrients and act as antagonists (Dellagi 

et al., 2020). Firstly, if useful microbes are killed, 

there might be change in nutritional dynamics in soil 

where microbes contribute potentially reducing 

nutrient availability in the long term. However, in the 

short term, seedlings may have taken available 

nutrients in the sterile soil, as it contains residual 

nutrients. 

Despite the lack of microbial activity on the soil 

nutrients, the readily available forms of nutrients 

might have supported the seedlings. Serrasolsas and 

Khanna (1995) have concluded that the heating soils 

to 120°C increases extractable nitrogen in the organic 

and mineral forms.  

Secondly, the beneficial microbes like bacteria 

and fungi compete with plants for nutrients such as 

nitrogen and phosphorus by reducing the amount 

accessible to plants (Zhu et al., 2016). Eliminating 

soil microbes by sterilization might have reduced 

competition for nutrients (Kuzyakov and Xu, 2013) 

between S. robusta seedlings and microbes. Hence, 

without microbial interference, the seedlings might 

have accessed more available nutrients, supporting 

elongation of root, shoot and expansion of leaves. 

Thirdly, elimination of harmful microbes supports 

growth and development of seedlings, enabling 

plants to make healthy with stronger root system and 

allocate more energy towards growth rather than 

defense mechanism (Janvier et al., 2007; Gleeson and 

Tilman, 1992).  

Lastly, microorganisms play a crucial role in 

minimizing the toxic effects of allelochemicals 
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produced by invasive plants through degradation or 

transformation (Vidal and Bauman, 1997; Jilani et 

al., 2008). In such cases, plant growth performance 

can be expected better in the unsterile soils. However, 

in some cases, microbial transformation of 

allelochemicals can produce more toxic compounds 

for non-native plants (Nair et al., 1990). Therefore, if 

that is the case, predicting the actual mechanism is 

difficult without knowing the specific microbes and 

allelochemicals of C. odorata present in the soils. 

despite longer roots and shoots in sterile soils, 

particularly in invaded sterile soils (fig. 1), 

sterilization did not show a significant change on root 

and shoot biomass (table 1). it suggests that the sterile 

soil promote initial growth in terms of root and shoot 

length as explained above but lack of significant 

effect on biomass may indicate that the sterile soil 

condition do not support seedlings to accumulate 

biomass. nevertheless, elongation of roots, shoots and 

leaves of seedlings benefits them by improving 

resource acquisition, enhancing competition and 

increasing stress tolerance (grossnickle and 

macdonald, 2018; tajima, 2021). 

Therefore, one of the mentionable benefit of 

having longer shoots and roots and broader leaves in 

sterile conditions is the improved resource 

acquisition, especially for light and water. This 

adaptation of S. robusta seedlings can promote early-

stage survival and improve plant’s resilience in C. 

odorata invaded soils. 

Unchanged root to shoot ratio of S. robusta 

seedlings by sterilization and soil type (Table 3) 

suggests that the seedlings may allocate resources in 

a similar manner in the conditions where they were 

grown. However, whether increased leaf length to 

breadth ratio (longer and narrower leaves) in 

uninvaded soils or decreased the ratio in invaded 

sterile soil condition (wider leaves) (Table 3, Fig. 4) 

benefit the seedlings for light capturing (Poorter and 

Rozendaal, 2008). Such changes indicate that native 

plants adapt differently by modifying the shape and 

size of leaves in response to invasion. Further, 

presence of soil microbes and available nutrients are 

other crucial factors that influence these 

modifications in leaf shape and size. 
 

 

Conclusion 
In conclusion, invaded soil reduces the root biomass, 

leaf length and leaf breadth of S. robusta seedlings. 

Sterilization of invaded soil stimulates root and shoot 

elongation, and enhances the leaf length and breadth 

of the seedlings. It indicates that the sterilization can 

promote early-stage survival for S. robusta seedlings 

and improve their resilience in C. odorata invaded 

soils. Modification in the leaf size of the seedlings 

suggest that the native plants adapt differently by 

altering the shape and size of leaves in response to 

invasion. Additionally, presence of soil microbes and 

available nutrients in soil are other factors 

influencing the growth parameters. Characterization 

of microbial communities and identifying specific 

microbes, along with allelochemicals of invasive 

plants in invaded soils, can help to understand 

invasion-microbe interactions and native plants’ 

response against the interactions.  
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