A Systematic Review of Skeletal, Dental and Soft Tissue Treatment Effects of Twin Block Appliance.

Dr Suchita Daokar,¹ Dr Mitali Sharma² ¹Professor, PG & PhD Guide, ²PG Resident Department of Orthodontics, CSMSS Dental College, Maharashtra, India

Correspondence: Dr Suchita Tarvade (Daokar); Email: suchitadaokar@gmail.com

ABSTRACT

This systematic review aims to assess skeletal, dental and soft tissue treatment effects of the conventional Twin-block appliance compared to control in Class II malocclusion till date. The electronic databases of Medline, PubMed and Cochrane library were systematically searched until September 2019. The human studies that had used the conventional Twin block appliance with a control group evaluated by a Lateral Cephalogram were included. A total of 321 articles were examined. 10 articles were selected. Majority studies reported a significant improvement in the mandible and in the vertical height, maxillary restrictive effect was less consistently reported. A restrictive maxillary molar effect and an advancement in the mandibular molar has been suggested. Retroclination of the maxillary incisors and proclination of mandibular incisor inclination has been reported. There is some evidence to suggest a retrusive upper lip effect and a protrusive lower lip effect. Increase in Nasolabial angle and some decrease in the mentolabial sulcus to be expected. In conclusion the conventional Twin Block appliance have shown desirable skeletal, dental and soft tissue effects. However certain inevitable side effects are also seen mainly its effect on lower anterior proclination.

Keywords: Systematic review, Twin block appliance, Treatment effects.

INTRODUCTION

The Twin block was developed by Dr William J. Clark in 1977.¹ Even though it's a removable appliance requiring patient compliance, it's still one of the most widely used functional correctors.

Twin-block appliance consists of upper and lower acrylic bite blocks with interlocking occlusal inclined planes at 70° angle, which functions to bring the mandible in its desired forward and downward position.² It's mainly indicated in actively growing Class II division I malocclusions.^{1,3}

Multiple authors have reported variable results with variable intensities till-date.⁴⁻⁵ A recent systematic review reporting all the treatment effects of Twin Block was lacking.

The aim of this review is to assess the possible skeletal, dental and soft tissue treatment effects of the conventional Twin-block appliance compared to controls in Class II malocclusion individuals till date.

MATERIALS AND METHODS

Information sources

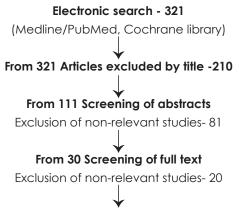
The electronic databases of Medline, PubMed and Cochrane library were systematically searched until September 2019. A limited grey-literature search was also done in Google Scholar.

Search strategy

Table 1 shows the terms used to carry out the search. Duplicate results were eliminated.

Inclusion criteria:

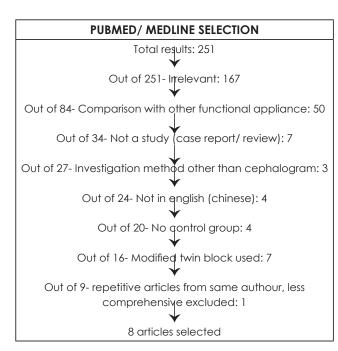
- 1. Human Cephalometric studies.
- 2. Use of conventional Twin-block appliance.
- Cases treated with Non-extraction and Nonsurgical approach to prevent introduction of any confounding factors.
- 4. Comparison with control group of untreated Class II malocclusion cases.⁵

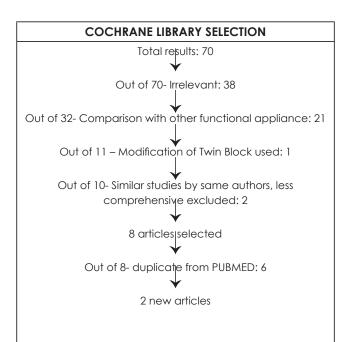

Table 1: Search data and search strategies.

Database	Search strategy	Number of Results
	(twin block OR twin-block OR twinblock) AND [(treatment	251
	outcome OR treatment effect\$) OR (skeletal effect OR skeletal change) OR (dental effect OR dental change) OR	70
	(facial change or profile change or soft-tissue change)]	14,800

Study selection

For each database search, first the titles and abstracts were evaluated. The articles that did not match the inclusion criteria, case reports, literature reviews, systematic reviews, editorial articles were all excluded. Articles including animal studies, modified twin block, non-cephalometric analysis were excluded. Selected abstracts were further subjected to scrutiny of the complete text. Also, when the abstracts were found to be unclear, the full text was obtained.


The 10 articles (FLOW CHART 1) which met all the inclusion criteria were finally included in the systematic review. Google Scholar did not reveal any different results than those from Pubmed/ Medline or Cochrane library. (FLOW CHART 2).



Study selection complete (10)

(10 studies meeting all criteria selected)

Flow Chart 1

Flow Chart 2

'₹
۵Ó
÷Š
é
-
ല്
ŧ
.⊑
ē
۵ ۵
š
)
<u>م</u>
p
Ũ
6
<u>.</u>
. <u>9</u>
<u>0</u>
0
σ
2
÷
ø
2
ä
đ
음
Ĕ

<u> </u>	Study	Study design (6√)
	À.	Objective - objective clearly formulated (v)
	В.	Sample size - considered adequate and estimated before collection of data (v)
	Ü	Baseline characteristics - similar baseline characteristics (v)
	Ū.	Co-interventions (1)
	ய்	Randomization - random sampling (v); random allocation of treatment (v)
=	Study	Study measurements (51)
	Ŀ.	F. Measurement method - appropriate to the objective (ν)
	G.	G. Blind measurement - blinding (examiner $arsigma$ statistician $arsigma$)
	Ŧ	Reliability - described (v), adequate level of agreement (v)
≡	Statis	Statistical analysis (54)
	<u> </u>	Statistical analysis - appropriate for data (v); combined subgroup analysis (v)
	Ŀ.	Confounders (co-interventions) - confounders included in analysis (v)
	<u>.</u>	Statistical significance level - P value stated (v); confidence intervals (v)
≥	IV Other (1√)	(14)
	<u>نـ</u>	L. Clinical significance (1)
	vimimr	Movimum number of sie = 17

Maximum number of \s = 17 \s = met; \text{ x = not met; } = partially met.

es.	
artic	
σ	
₽ ₽	
ŝ	
sel	
ð	
₽	
p	
s	
ē	
8	
š	
ō	
<u>е</u>	
g	
ō	
g	
Ĕ	
ø	
2	
ë	
Ð	
ß	
Ĕ	

	Risk of Bias		Σ	Σ	_		т	Т	т	т	т
	Total *Score (Out of 1(7))	14	12	12	14	13	6	=	01	10	6
	Significance	~	~	~	~	~	~	~	~	~	~
	Confidence Confidence	~	~	~	~	~	~	~	~	~	7
	P value	~	~	~	~	~	~	~	~	~	~
	Confounders Included in Analysis	~	~	~	~	~	×	~	~	~	~
	Statistical Analysis	~	~	~	~	~	-	~	~	~	~
RELIABILITY TESTING	Inter-rater	~	~	~	~	~	×	×	×	×	×
RELIABILIT	Intra-rater	7	7	7	7	7	×	7	7	7	×
BLINDING	Statistician	×	×	×	×	×	×	×	×	×	×
BLINI	Examiner	~	×	×	~	×	×	×	×	×	×
	Wethod Measurement	~	~	~	~	~	~	~	~	~	7
NIZATION	Random	~	×	×	~	~	×	×	×	×	×
RANDOMI	Sampling Random	×	×	×	×	×	×	×	×	×	×
	No Co-interventions	~	~	~	~	7	~	~	~	~	~
	Baseline	~	~	~	~	~	~	~	×	×	×
	əzi? əlqmp?	/	-	7	_	~	_	7	~	7	~
	əvitəəjdO	~	~	~	~	~	~	~	~	~	~
) Illing et al.7	2) Jena et al. ⁸	3) Lund & Sandler ⁹	4) Morris et al. ¹⁰	5) Varlik et al. ¹¹	6) Dauvravu et al ¹²	7) Khoja et al ¹³	8) Baysal et al ¹⁴	9) Baysal et al ¹⁵	10)Tümer et al ¹⁶

Daokar S, Sharma M : A Systematic Review of Skeletal, Dental and Soft Tissue Treatment Effects of Twin Block Appliance.

Tuble 4. Sommuly of selected difficies.									
			Sample Size	•					
	Study Type*	Total	Twin Block	Control	Mean age of combined groups at T1 (years)	Skeletal maturity indicators	Treatment duration (months)		
1) Illing et al ⁷	Р	36	16	20	11.2	-	9		
2) Jena et al [®]	Р	35	25	10	11.4	-	12.78		
3) Lund and Sandler ⁹	Р	63	36	27	12.4	-	14.4		
4) Morris et al ¹⁰	Р	36	16	20	11.2	-	9		
5) Varlik et al ¹¹	Р	50	25	25	11.9	MP3 H stage	8		
6) Dauvravu et al ¹²	Р	28	17	11	10-14 years	CVMI- III and IV MP3-H stage	11.5		
7) Khoja et al ¹³	Р	113	53	60	11.3	CVMI- II, III, IV	8-12		
8) Baysal et al ¹⁴	Р	40	20	20	12.58	MP3 S and H2 stage	15.89		
9) Baysal et al ¹⁵	Р	40	20	20	12.58	MP3 S and H2 stage	15.89		
10) Tümer et al ¹⁶	Р	26	13	13	13	-	7-14		

Table 4: Summary of selected articles.

*P= prospective, R= retrospective; - =not mentioned

Data items and collection

Skeletal cephalometric findings denoting anteroposterior maxillary changes, mandibular changes, vertical changes, dental findings denoting effects on maxillary and mandibular molars and incisors, overjet and soft tissue findings such as the nasolabial angle, mentolabial sulcus and the position of upper and lower lip were collected.

Risk of bias in individual studies

Risk of bias was assessed through the evaluation of methodological quality study characteristics (Table 2). $^{5, 17}$

Intra-rater reliability, interrater reliability, and blinding of examiner and/or statistician were considered. The studies were labeled as low risk, medium risk and high risk for bias. (Table 3).

Summary measures

Basic study characteristics for each of the 10 studies are mentioned in Table 4.

RESULT

68

Selection and study characteristics

A total of 10 articles meeting the inclusion criteria were selected as shown in Flow Chart 1 & 2.

Risk of Bias within Studies

Out of the 10 studies 3 studies^{7,10,11} have a low risk of bias, 5 studies¹²⁻¹⁶ have a high risk of bias and remaining^{8, 9} have a medium risk of bias.

Antero-posterior effects on maxilla (Table 5)

Illing et al,⁷ Dauvravu et al,¹² Baysal et al¹⁵ have

reported a significant headgear effect. Whereas, Jena et al,⁸ Lund and Sandler,⁹ Khoja et al,¹³ Baysal et al¹⁴ and Tümer et al¹⁶ have reported maxillary restrictive effect which were statistically insignificant. Varlik et al¹¹ reported no maxillary restrictive effect.

Antero-posterior effects on mandible (Table 6)

All authors have reported statistically significant increase in mandible.

Vertical effects (Table 7)

Illing et al,⁷ Lund and Sandler,⁹ Khoja et al,¹³ Baysal et al¹⁴ and Tümer et al¹⁶ have stated statistically significant increase in the vertical height and Baysal et al¹⁵ have reported insignificant findings.

Effects on maxillary molar (TABLE 8)

Jena et al,⁸ Lund and Sandler,⁹ Dauvravu et al¹² and Tümer et al¹⁶ have revealed statistically significant restrictive effect on the maxillary molars and, Baysal et al¹⁴ have reported otherwise.

Effect on mandibular molar (TABLE 9)

Lund and Sandler,⁹ Dauvravu et al¹² and Tümer et al¹⁶ have reported statistically significant advancement of the mandibular molar. Baysal et al¹⁴ and Jena et al⁸ have reported statistically insignificant findings.

Effect on maxillary incisors (TABLE 10)

Except for Baysal et al¹⁴ and Baysal et al,¹⁵ all other studies have reported statistically significant decrease in maxillary incisors inclination.

Effect on mandibular incisors (TABLE 11)

Except for Baysal et al $^{\rm 14}$ and Baysal et al, $^{\rm 15}$ all

		Change	es Reported			
Study	Parameter	Chunge		P Value	Significance S / NS	
		Control group	Treatment group		3	
1) Illing et al. ⁷	SNA	0.3	-1.4	p< 0.01	S	
2) Jena et al ⁸	-	2.04	-1.64	p=0.259	NS	
3) Lund and Sandler ⁹	SNA	0.3	-0.1	p>0.05	NS	
4) Varlik et al ¹¹	Point A to Y axis(Se to ptm)	0.2	1.2	p>0.05	NS	
5) Dauvravu et al ¹²	Ss/rlp (Pancherz analysis)	-	-0.67	p=0.022	S	
6) Khoja et al ¹³	SNA	0.04 ± 1.01	-0.19 ± 1.10	p=0.168	NS	
7) Baysal et al ¹⁴	Point A/olp (Pancherz analysis)	1.35	-0.45	p>0.05	NS	
8) Baysal et al ¹⁵	SNA	0.20	-0.75	p=0.004	S	
9) Tümer et al ¹⁶	SNA	0.05	-0.23	p>0.05	NS	

Table 5: Skeletal antero-posterior effects on maxilla.

S= significant, NS= not significant

Table 6: Skeletal antero-posterior effects on mandible.

Study	Berematar	Change	es Reported	P Value	Ci
51009	Parameter	Control group	Treatment group	r value	Significance
1) Illing et al. ⁷	Ar to Gn	1	3.2	(p<0.05)	S
2) Jena et al ⁸	-	3.54mm	5.52mm	(p<0.01)	S
3) Lund and Sandler ⁹	SNB	0.4	1.9	(p<0.001)	S
4) Varlik et al ¹¹	B to Y axis(Se to ptm)	0.4	4.2	(p<0.001)	S
5) Dauvravu et al ¹²	pg/ OLp (Pancherz analysis)	-	4.88mm	(p= 0.000)	S
6) Khoja et al ¹³	SNB	0.17 ± 1.03	1.73 ± 1.22	(p<0.001)	S
7) Baysal et al ¹⁴	pg/OLp (Pancherz analysis)	2.12	4.62	(p=0.009)	S
8) Baysal et al ¹⁵	SNB	0.45	2.07	(p<0.001).	S
9) Tümer et al ¹⁶	SNB	0.31	1.77	(p<0.01).	S

S= significant, NS= not significant

Table 7: Vertical skeletal effects

Study	Demonster	Change	es Reported	P Value	Ci 10
	Parameter	Control group	Treatment group	r value	Significance
1) Illing et al. ⁷	Lower anterior facial height	-0.3	+2.7	(p<0.01)	S
2) Lund and Sandler ⁹	Total anterior facial height	2.3	4.9	(p<0.001).	S
3) Khoja et al ¹³	Sn-GoGn	-0.19 ± 1.09	0.60 ± 2.45	(p=0.029)	S
4) Baysal et al ¹⁴	Lower anterior facial height	2.05	3.85	(p=0.022)	S
5) Baysal et al ¹⁵	Sn-GoGn	-0.62	- 0.25	(p>0.05).	NS
6) Tümer et al ¹⁶	Ar-Go-M	-0.73	2.31	(p<0.01)	S

S= significant, NS= not significant

Table 8: Effects on maxillary molar

Study		Change	es Reported	D.) (where	Ci
	Parameter	Control group	Treatment group	P Value	Significance
1) Jena et al [®]	-	-0.36mm	-1.36mm	(p<0.05)	S
2) Lund and Sandler ⁹	U6 -horizontal	0.9	-0.7	(p=0.05-0.01)	S
3) Dauvravu et al ¹²	(mi/RLp by Pancherz analysis)	-	-0.133 ± 1.245mm	(p=0.014)	S
4) Baysal et al ¹⁴	mi/OLp-pg/OLp (Pancherz analysis)	0.27	-0.52	(p>0.05)	NS
5) Tümer et al ¹⁶	U6 to Ptv	1.50	-0.54	(p<0.01)	S

S= significant, NS= not significant

Table 9: Effects on mandibular molar

Study	Parameter	Change	s Reported	P Value		
	Fuldmeler	Control group	Treatment group	rvalue	Significance	
1) Jena et al ⁸	-	0.36mm	1.53mm	(p>0.05)	NS	
2) Lund and Sandler ⁹	L6- horizontal	1.0	4.7	(p=0.05-0.01)	S	
3) Dauvravu et al ¹²	mi/RLp(d) minus pg/RLp(d) (Pancherz analysis)	-	0.666±1.496mm	(p<0.01)	S	
4) Baysal et al ¹⁴	mi/OLp-pg/OLp	-0.22	0.35	(p>0.05)	NS	
5) Tümer et al ¹⁶	L6/Ptv	2.04	4.89	(p<0.01)	S	

S= significant, NS= not significant

Table 10: Effects on maxillary incisor

Chudu	Devenue alar	Change	es Reported	D. Value	C1 10
Study	Parameter	Control group	Treatment group	P Value	Significance
1) Illing et al ⁷	U1 to maxillary plane	-1.9	-9.1	(p<0.01)	S
2) Jena et al ⁸	-	-0.53mm	-1.43mm	(p<0.001)	S
3) Lund and Sandler ⁹	U1 to maxillary plane	-0.2	-11	(p<0.001)	S
4) Morris et al ¹⁰	-	-	-	-	-
5) Varlik et al ¹¹	U1- SN	0.2	-2.6	(p<0.001)	S
6) Dauvravu et al ¹²	is/RLp (Pancherz analysis)	-	0.866±1.125mm	(p=0.054)	S
7) Khoja et al ¹³	U1- SN	1.12 ± 4.19	-4.66 ± 5.44	(p<0.001)	S
8) Baysal et al ¹⁴	is/OLp- A/OLp	0.75	0.45	(p>0.05)	NS
9) Baysal et al ¹⁵	U1- SN	1.62	-1.47	(p>0.05)	NS
10) Tümer et al ¹⁶	U1/Ptv	1.58	-1.50	(p<0.01)	S

S= significant, NS= not significant

Table 11: Effects on mandibular incisor

Study	Parameter	Changes Reported		P. Value	Ciami6 a an a a
		Control group	Treatment group	P Value	Significance
1) Illing et al ⁷	Lower incisor to mandibular plane	-0.7	+2	(p<0.001)	S
2) Jena et al ⁸	-	-0.59mm	+1.44mm	(p<0.001)	S
3) Lund and Sandler ⁹	Li- mandibular plane	0.9	4.4	(p<0.001)	S
4) Varlik et al ¹¹	IMPA	No change	1.3	(p<0.001)	S
5) Dauvravu et al ¹²	li/rlp		1.40±1.638mm	(p=0.012)	S
6) Khoja et al ¹³	IMPA	1.05 ± 3.45	4.30 ± 3.91	(p=0.001)	S
7) Baysal et al ¹⁴	li/olp- pg/olp	-0.40	0.15	(p>0.05)	NS
8) Baysal et al ¹⁵	IMPA	0.57	0.92	(p>0.05)	NS
9) Tümer et al ¹⁶	L1/ptv	1.19	5.73	(p<0.01)	S

S= significant, NS= not significant

70

other authors have reported statistically significant proclination of mandibular incisors.

Effects on the Overjet (Table 12)

All studies have reported a statistically significant decrease in the overjet.

Soft tissue effects of Twin Block (Table 13)

Morris et al,¹⁰ Varlik et al,¹¹ Khoja et al¹³ and Baysal et al¹⁵ have

reported statistically significant retrusive upper lip effect with a significant increase in nasolabial angle, whereas insignificant findings were reported by Morris et al¹⁰ and Baysal et al.¹⁵ Morris et al,¹⁰ Khoja et al¹³ and Baysal et al¹⁵ have narrated a statistically significant lower lip protrusion, whereas, Varlik et al¹¹ reported otherwise. Of these four studies, Morris et al¹⁰ revealed insignificant change whereas Varlik et al¹¹ and Baysal et al¹⁵ reported statistically significant increase in the mentolabial sulcus depth.

Table 12: Effects on the overjet

•					
Study	Parameter	Changes Reported		P Value	
		Control group	Treatment group	P value	Significance
1) Illing et al ⁷	Overjet	0.8	-5.7	(p<0.01)	S
2) Jena et al ⁸	Overjet	0.37mm	-6.75mm	(p<0.001)	S
3) Lund and Sandler ⁹	Overjet	-0.3	-7.9	(p<0.001)	S
4) Dauvravu et al ¹²	is/RLp-ii/RLp		-6.54±1.12mm	(p<0.000)	S
5) Khoja et al ¹³	Overjet	-0.30 ± 1.25	-6.50 ± 2.46	(p<0.001)	S
6) Baysal et al ¹⁴	is/OLp-ii/OLp	0.38	-4.48	(p=0.000)	S
7) Tümer et al16	Overjet	0.27	-7.46	(p<0.01)	S

S= significant, NS= not significant

Table 15: Son issue enects								
Study	Parameter	Change	Changes Reported		Significance			
	i di di leter	Control group	Treatment group	P Value	Significance			
1) Morris et al10	1. Upper lip to E line	0.7	-1.4	p<0.01	S			
	2. Lower lip to E line	0.8	3.8	p<0.05	S			
	3. NLA:	6	3.8	p>0.05	NS			
	4. MLS:	12.1	-0.6	p>0.05	NS			
2) Varlik et al 1 1	1. Upper lip: Ls to Y Line	0.03	-2.23	P< 0.001	S			
	2. Lower lip: Li to Y axis	0.23	3.10	p≤0.001	S			
	3. NLA:	0.10	6.23	p< 0.05	S			
	4. MLS:	0.50	16.35	p<0.001	S			
3) Khoja et al13	1. Upper lip to E-line	-0.62 ± 3.47	-0.81± 2.41	p=0.015	S			
	2. Lower lip to E-line	-0.55 ± 4.24	0.37 ± 1.57	p=0.082	NS			
	3. NLA:	-3.72± 14.17	3.64 ± 9.83	p=0.001	S			
	4. MLS:	-	-	-	-			
4) Baysal et al15	1. Upper lip to E line	0.22	- 2.72	p<0.001	S			
	2. Lower lip to E line change	- 0.32	- 0.9	p<0.001	S			
	3. NLA:	2.35	- 0.35	p>0.05	NS			
	4. MLS:	- 10	22.6	p<0.001	S			

Table 13: Soft tissue effects

S= significant, NS= not significant

DISCUSSION

According to the results, restrictive maxillary effects of Twin block were reported by a few studies,^{7,12,15} whereas most studies reported no restrictive maxillary effect.^{8,9,11,13,14,16} All the studies reported a significant increase in the mandibular jaw base.⁷⁻¹⁶

Out of the 10 studies, only 6 studies have registered vertical skeletal changes. All have found statistically significant increase in vertical dimensions^{7,13-16} except for one study which gave insignificant results.⁹

Out of the studies that reported maxillary molar and mandibular molar changes only one study 14 reported

insignificant changes while others showed a statistically significant maxillary molar restrictive effect and a mandibular molar advancement.^{8,9,12,16}

Except for Two studies^{14,15} all other studies reported a significant decrease in the inclination of the maxillary incisors.^{7-9,11-13,16} Most of the studies reported a significant mesial mandibular incisor movement.^{8,9,11-13,16} Some studies have reported insignificant mandibular incisor change.^{7,14,15}

Except for the 3 studies that did not report changes in the overjet, 10,11,15 all have reported a significant decrease in the overjet. ^{7-9,12-14, 16}

Studies reporting soft tissue parameters were only four.^{10,11,13,15} Equal number of studies found significant^{11,13} and insignificant^{10,15} changes in the Nasolabial angle. Two studies found significant^{11,15} change in the Mentolabial sulcus whereas one study found an insignificant result.¹⁰ All studies found a significant posterior positioning of the Upper lip,^{10,11,13,15} and anterior positioning of the Lower lip position,^{10,11,15} except for one.¹³

CONCLUSION

This systematic review has aimed to find out the dental, skeletal and soft tissue effects of the conventional Twin Block appliance as compared with the control. From this systematic review it can be safely concluded that the conventional Twin Block appliance is indicated for individuals diagnosed with a Class II malocclusion with a horizontal growth pattern and a frank mandibular retrognathism. The use of this appliance is contraindicated in the cases of maxillary prognathism. Effective and favourable soft tissue changes are seen. However, some inevitable dental changes mainly lower anterior proclination are strongly reported which need to be timely addressed.

OJN

REFERENCES

- 1. Clark W, Clark WJ. Twin block functional therapy. JP Medical Ltd; 2014 Sep 30.
- 2. Trenouth MJ. A functional appliance system for the correction of Class II relationships. British journal of orthodontics. 1989 Aug;16(3):169-76.
- 3. Proffit WR, Fields Jr HW, Sarver DM. Contemporary orthodontics. Elsevier Health Sciences; 2006 Dec 8.
- 4. Flores-Mir C, Major PW. Cephalometric facial soft tissue changes with the Twin block appliance in Class II division 1 malocclusion patients: a systematic review. The Angle Orthodontist. 2006 Sep;76(5):876-81.
- 5. Ehsani S, Nebbe B, Normando D, Lagravere MO, Flores-Mir C. Short-term treatment effects produced by the Twin-block appliance: a systematic review and meta-analysis. European Journal of Orthodontics. 2015 Apr 1;37(2):170-6.
- 6. Cozza P, Baccetti T, Franchi L, De Toffol L, McNamara Jr JA. Mandibular changes produced by functional appliances in Class II malocclusion: a systematic review. American Journal of Orthodontics and Dentofacial Orthopedics. 2006 May 1;129(5):599-e1.
- Illing HM, Morris DO, Lee RT. A prospective evaluation of Bass, Bionator and Twin Block appliances. Part I-The hard tissues. The European Journal of Orthodontics. 1998 Oct 1;20(5):501-16.
- 8. Jena AK, Duggal R, Parkash H. Orthopedic and orthodontic effects of twin-block appliance. Journal of Clinical Pediatric Dentistry. 2005 Apr 1;29(3):225-30.
- 9. Lund DI, Sandler PJ. The effects of Twin Blocks: a prospective controlled study. American Journal of Orthodontics and Dentofacial Orthopedics. 1998 Jan 1;113(1):104-10.
- 10. Morris DO, Illing HM, Lee RT. A prospective evaluation of Bass, Bionator and Twin Block appliances. The European Journal of Orthodontics. 1998 Dec 1;20(6):663-84.
- 11. Varlık SK, Gültan A, Tümer N. Comparison of the effects of Twin Block and activator treatment on the soft tissue profile. The European Journal of Orthodontics. 2008 Apr 1;30(2):128-34.
- 12. Dauravu LM, Vannala V, Arafath M, Singaraju GS, Cherukuri SA, Mathew A. The assessment of sagittal changes with twin block appliance in patients with decelerating growth phase. Journal of clinical and diagnostic research: JCDR. 2014 Dec;8(12):ZC81.
- 13. Khoja A, Fida M, Shaikh A. Cephalometric evaluation of the effects of the Twin Block appliance in subjects with Class II, Division 1 malocclusion amongst different cervical vertebral maturation stages. Dental press journal of orthodontics. 2016 Jun;21(3):73-84.
- 14. Baysal A, Uysal T. Dentoskeletal effects of Twin Block and Herbst appliances in patients with Class II division 1 mandibular retrognathy. European journal of orthodontics. 2014 Apr 1;36(2):164-72.
- 15. Baysal A, Uysal T. Soft tissue effects of Twin Block and Herbst appliances in patients with Class II division 1 mandibular retrognathy. The European Journal of Orthodontics. 2013 Feb 1;35(1):71-81.
- 16. Tümer N, Gültan AS. Comparison of the effects of monoblock and twin-block appliances on the skeletal and dentoalveolar structures. American journal of orthodontics and dentofacial orthopedics. 1999 Oct 1;116(4):460-8.
- 17. Lagravere MO, Major PW, Flores-Mir C. Long-term skeletal changes with rapid maxillary expansion: a systematic review. The Angle Orthodontist. 2005 Nov;75(6):1046-52.