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Abstract
In this paper the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters of Perks distribution
based on a complete sample. The procedures are developed to perform full Bayesian analysis of the Perks distributions
using MCMC simulation method in OpenBUGS. We obtained the Bayes estimates of the parameters, hazard and
reliability functions, and their probability intervals are also presented. We also discussed the issue of model
compatibility for the given data set.   A real data set is considered for illustration under gamma sets of priors.

Introduction
Perks (1932) proposed the four-parameter extension
of the Gompertz–Makeham distribution that has hazard
rate of the form:

The choice K = D = 0 yields the Gompertz–Makeham
hazard rate. It appears that Perks intended the
parameters to be nonnegative. Marshall and Olkin
(2007) have shown that we cannot take D=0. However,
Gompertz–Makeham distribution can be obtained by
setting K=0 and taking limit as D → 0.

 Recently, the modified version of Perks distribution
has been introduced by Richards (2008, 2012) by
considering the hazard function of Perks
distribution as

Applications of the Perks distribution to actuarial
science include: models for pensioner mortality data
(Richards 2008), parametric mortality projection

models (Haberman & Renshaw 2011). The moments
for this distribution do not appear to be available in
closed form, (Nadarajah & Bakar 2012). Another
version of Perks distribution has been introduced
by (Yee 2012).

It is to be noted that most of the cited literature are
confined to classical developments and any systematic
development on Bayesian results are rarely seen for
the Perks distribution. The importance of the Bayesian
method is well known both in the context of reliability
studies and otherwise. Among several advantages,
the most important is the fact that the Bayesian
methods are equally well applicable for small sample
sizes and censored data problems; the two common
features in reliability data analyses.

In this paper, the Perks distribution has been introduced
and maximum likelihood estimation(MLE) is discussed
in Section 2. Section 3 deals Bayesian model
formulation. A real data set is presented in Section 4
for analysis. The exploratory data analysis and ML
estimation and corresponding model validation are
performed in section 5.  The full Bayesian analysis
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under independent gamma of priors of the data set
using Markov chain Monte Carlo (MCMC) simulation
method in OpenBUGS, an established software, is
presented in section 6. We have obtained the Bayes
estimates of the parameters, hazard and reliability
functions, and their probability intervals are also
presented. We have also discussed the issue of model
compatibility for the given data set.

Perks distribution

Model analysis

Cumulative distribution function

The distribution function of Perks distribution with
two parameters is given by

where α > 0 and β > 0 are the parameters. The Perks
distribution will be denoted by PS(α, β). The
corresponding probability density function is given
by

The reliability/survival function is

Some of the typical Perks density functions for
different values of β and for α = 1 are depicted in
Fig. 1. It is clear that the density function of the
PS(α, β) distribution can take different shapes.

 (2.1)

(2.2)

(2.3)

Fig. 1. The probability density function of Perks I
distribution for α=1 and different value of β

The hazard rate function is

Fig. 2 exhibits the different hazard rate functions of
PS(α, β) distribution for α = 1and different values of β.

The quantile function is given by

The cdf has close nice form, using the inverse
transform method, the random deviate can be
generated from PS(α, β) by

where u has the U(0, 1) distribution.

 (2.4)

(2.5)

 

Fig. 2. The hazard function of Perks I distribution for α=1
and different values of β

(2.6)

Maximum likelihood estimation (MLE)

For completeness purposes, in this section, we brieûy
discuss the maximum likelihood estimators (MLE’s) of
the two-parameter PS1(α, β) distribution.

Let x=(x1, . . . , xn) be a random sample of size n from
PS1(α, β) , then the log-likelihood function l(α, β) can
be written as;
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Therefore, to obtain the MLE’s of α and β, we can
maximize (2.7) directly with respect to  and  or we can
solve the following two non-linear equations using
Newton-Raphson method.

.

From the asymptotic normality of MLEs, an
approximate  confidence intervals for  and  can be
constructed as

where  is the upper percentile of standard normal
variate.

Bayesian model formulation

The Bayesian model is constructed by specifying the
prior distributions for the model parameters  and, and
then multiplying with the likelihood function to obtain
the posterior distribution function.
• Probability Model :  f(x|α, β)
• Prior distribution : p(α, β)
• Data : x = (x1 ..... xn)

Given a set of data x=(x1.... xn), the likelihood function is

Denote the prior distribution of  and as . The joint
posterior is

Prior distributions

We assume the independent gamma priors for
α ~ G(a1, b1) and β ~ G(a2, b2)    as

Posterior distribution

Combining the likelihood function with the prior via
Bayes’ theorem yields the posterior as

It can be written, upto proportionality, as

It can be seen that posterior is quite messy, therefore,
we propose to consider MCMC methods to simulate
samples from the posterior so that sample-based
inferences can be easily drawn.

The Gibbs sampler is as an important Markov Chain
Monte Carlo technique, which provides a way for
extracting samples from the posteriors, often specified
up to proportionality, as a product of likelihood function
and the prior. MCMC is essentially Monte Carlo
integration using Markov chains. The scheme proceeds
iteratively by generating variate values in a cyclic manner
from the various full conditionals, which are also specified
up to proportionality from the joint posterior.

This sampling scheme was first introduced by Geman
and Geman(1984), but the applicability to statistical
modelling for Bayesian computation was demonstrated
by Gelfand and Smith (1990).

The algorithm starts by assuming some arbitrarily
chosen initial values for the concerned variates and
then generating the variate values from the various
full conditionals in a cyclic order. That is, every time a
variate value is generated from a full conditional, it is
influenced by the most recent values of all other
conditioning variables and, after each cycle of iteration,
it is updated by sampling a new value from its full
conditional. The entire generating scheme is repeated
unless the generating chain achieves a systematic
pattern of convergence. It can be shown that after a
large number of iterations the generated variates can
be regarded as the random samples from the

(2.7)

    and

 
( )nn a 1 n a 11 2p( , | x) 1+ − + −α β ∝ α β +α

and
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corresponding posteriors. Gamerman and Lopes (2006),
Albert (2009), Hamada et al. (2008), Hoff (2009),
Ntzoufras (2009) and Robert and Casella (2010) provide
the details of the procedure and the related
convergence diagnostic issues.

For Gibbs sampler implementation, the full conditionals
of  and  upto proportionality can be specified as

(i) full conditional distribution of the parameter α
for given β and x

(ii) full conditional distribution of the parameter β
for given á and x

We shall use OpenBUGS software to obtain posterior
samples. As the Perks distribution is not available in
OpenBUGS, it requires incorporation of a module in
ReliaBUGS [Kumar et al. (2010)] and [Lunn (2010)],
subsystem of OpenBUGS for Perks distribution.

A module dPerks1_T(alpha, beta) is written in
Component Pascal for Perks, the corresponding
computer program can be obtained from authors, to
perform full Bayesian analysis in OpenBUGS using
the method described in Thomas et al. (2006), Thomas
(2010),  Kumar et al. (2010) and Lunn et al. (2000, 2013).
It is important to note that this module can be used for
any set of suitable priors of the model parameters.
Almost all aspects of the model in Bayesian framework

can be studied using the developed module
dPerks1_T(alpha, beta) Kumar (2010).

Data set

The following real data set is considered for illustration
of the proposed methodology. The data below are from
an accelerated life test of 59 conductors, failure times
are in hours, and there are no censored observations
Lawless (2003).

2.997, 4.137, 4.288, 4.531, 4.700, 4.706, 5.009, 5.381, 5.434,
5.459, 5.589, 5.640, 5.807, 5.923, 6.033, 6.071, 6.087, 6.129,
6.352, 6.369, 6.476, 6.492, 6.515, 6.522, 6.538, 6.545, 6.573,
6.725, 6.869, 6.923, 6.948, 6.956, 6.958, 7.024, 7.224, 7.365,
7.398, 7.459, 7.489, 7.495, 7.496, 7.543, 7.683, 7.937, 7.945,
7.974, 8.120, 8.336, 8.532, 8.591, 8.687, 8.799, 9.218, 9.254,
9.289, 9.663, 10.092, 10.491, 11.038

Classical analysis

 Exploratory data analysis (EDA)

The goal of data analysis is to gain information from
the data. The modern statistical data analysis tools
include the exploratory data analysis (Tukey 1977).

Exploratory data analysis is a set of methods to display
and summarize the data :
• displaying the data in a graph that shows overall

patterns and unusual observations (bar chart,
histogram, density curve)

• computing descriptive statistics that summarize
specific aspects of the data (center and spread).

Table 1.   Summary statistics

Min. Q1 Median Mean Q3 Max. Skewness Kurtosis

2.997 6.052 6.923 6.980 7.941 11.040 0.1882 -0.0164

Fig. 3.   The boxplot (leftg panel); Histogram and Kernel density estimate (right panel) along with the data points
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The total-time-on-test(TTT) plot is a graphical
procedure to get some idea about the shape of the
hazard function. We have used the empirical version
of the scaled TTT plot, Aarset (1987).  We have plotted
the empirical version of the scaled TTT transform of
the data set in Fig. 4. Since the empirical version of the
scaled TTT transform is concave, it indicates that the
hazard function is increasing.

Fig. 4.  The empirical scaled TTT transform of the data set

Computation of MLE

The maximum likelihood estimates (MLEs) are obtained
by direct maximization of the log-likelihood function
l(α, β) given in (2.7). The advantage of this procedure
is that it runs immediately using existing statistical
packages such R [R Development Core Team, (2013)],
and [Rizzo(2008)]. We consider the software R through
the Quasi-Newton algorithm [Lange (1999)] to compute

Fig. 5.    Contour plot

the MLEs. The MLEs (and the corresponding standard
errors in parentheses) and the maximized value of
loglikelihood  of the Perks distribution parameters are
given by

,

and 

Model validation

To check the validity of the model we compute the
Kolmogorov-Smirnov (KS) distance between the
empirical distribution function and the fitted distribution
function when the parameters are obtained by method
of maximum likelihood is 0.0576 and the corresponding
p-value is 0.9832.  We have plotted the empirical
distribution function and the fitted distribution function
in Fig. 6, (Kumar & Ligges 2011). From the Figure 6, it is
clear that the fitted Perks distribution provides good ût
to the given data.

Fig. 6.  The graph of empirical and fitted distribution function

A further support for this finding can be obtained by
inspecting the probability-probability (P–P) and
quantile–quantile (Q–Q) plots. A  P–P plot depicts the
points:

 Where   and (i)x  are the order statistics,
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is the empirical distribution function and I( )⋅  is the
indicator function.

A Q–Q plot depicts the points:

Fig. 8. Quantile-Quantile(Q-Q) plot using MLEs as estimate

Bayesian Analysis

OpenBUGS script for the Bayesian analysis of Perks  distribution

model
{

for( i in 1 : N )
{

x[i] ~ dperks1_T(alpha, beta)
reliability[i] <- R(x[i], x[i]) # to estimate reliability
f[i] <- density(x[i], x[i]) #  to estimate density
hrf[i] <- hrf(x[i], x[i]) # to estimate hazard rate

# To predict the data set
ep[i] <- (i - 0.5)  / N
 x.new[i] <-(1.0 / beta) * log((1.0/alpha)*(((1+alpha)/(1.0 - ep[i])) -1.0))
}

# Prior distributions of the model parameters
alpha ~ dgamma(0.001, 0.001)
beta ~ dgamma(0.001, 0.001)

}
DATA

list(N=59, x =c(2.997, 4.137, 4.288, 4.531, 4.700, 4.706, 5.009, 5.381, 5.434, 5.459, 5.589, 5.640, 5.807, 5.923, 6.033, 6.071,
6.087, 6.129, 6.352, 6.369, 6.476, 6.492, 6.515, 6.522, 6.538, 6.545, 6.573, 6.725, 6.869, 6.923, 6.948, 6.956, 6.958, 7.024,
7.224, 7.365, 7.398, 7.459, 7.489, 7.495, 7.496, 7.543, 7.683, 7.937, 7.945, 7.974, 8.120, 8.336, 8.532, 8.591, 8.687, 8.799,
9.218, 9.254, 9.289, 9.663, 10.092, 10.491, 11.038))

The P–P and Q–Q plots for the fitted model are shown
in Fig. 7 and Fig. 8. It is evident that the fit of the Perks
distribution is good.

Fig. 7. Probability-Probability(P-P) plot using MLEs as
estimate
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Init1
list(alpha=0.001,  beta= 0.5)    # Chain 1

Init2
list(alpha=0.0001, beta= 1.0)   # Chain 2

We assume the independent gamma priors for α ~ G(a1,
b1) and β ~ G(a2, b2) with hyper parameter values
a1 = b1 = a2 = b2 = 0.001. We run the model to generate
two Markov Chains at the length of 40,000 with
different starting points of the parameters. We have
chosen initial values (α = 0.001, β = 0.5)  for the first
chain and (α = 0.0001, β = 1.0)  for the second chain.
The convergence is monitored using trace and
ergodic mean plots. We find that the Markov Chain
converge together after approximately 2000
observations. Therefore, burn-in of 5000 samples is
more than enough to erase the effect of starting
point (initial values). Finally, samples of size 7000 are
formed from the posterior by picking up equally spaced
every fifth outcome (to minimize the auto correlation
among the generated deviates.), i.e. thin=5, starting
from 5001.

Therefore, we have the posterior sample

 from chain 1 and

 from chain 2.

The chain 1 is considered for convergence diagnostics
plots and the visual summary. The numerical summary
is presented for both the chains.

Convergence diagnostics

The first step in making an inference from an MCMC
analysis is to ensure that an equilibrium distribution
has indeed been reached by the Markov chain, i.e.,
the chain has converged. There are several ways to
check for convergence. Most methods use at least
two parallel chains. Visual checks are routinely used
to confirm convergence.

The sequential plot of parameters is the plot that most
often exhibits difficulties in the Markov chain.
Sequential realization of the parameters α  and αb for
iteration number 3001 to 8000 can be observed in
Fig. 9. The dotted line represents the mean of all 5000

sample values. In this case Markov chain seems to be
mixing well enough and is likely to be sampling from
the stationary distribution.

History(Trace) plot

Fig. 9.    Sequential realization of the parameters α and β.

Fig. 10.  The Ergodic mean plots for α and β

Running Mean (Ergodic mean) Plot

Generate a time series (iteration number) plot of the
running mean for each parameter in the chain. The
running mean is computed as the mean of all sampled
values up to and including that at a given iteration.
The convergence pattern based on ergodic averages
is shown in Fig. 10 indicating the convergence of the
chain.

The dotted line represents the mean of sample values.
The plot shows that the ergodic mean stabilizes as
chain advances.

Posterior analysis

(a) Numerical summary

In Table 2, we have considered various quantities of
interest and their numerical values based on MCMC
sample of posterior characteristics for Perks
distribution under gamma priors.
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Table 2.   Numerical summaries based on MCMC sample of posterior characteristics for Perks distribution

Characteristics                     Chain 1                Chain 2

alpha beta alpha beta

Mean 0.000655 1.1101 0.000679 1.1046

Standard Deviation 0.000636 0.1236 0.000689 0.1213

Minimum 0.000011 0.7322 0.000008 0.6432

2.5th Percentile(P2.5) 0.000076 0.8798 0.000081 0.8750

First Quartile (Q1) 0.000253 1.0240 0.000263 1.0210

Median 0.000461 1.1060 0.000476 1.1010

Third Quartile (Q3) 0.000834 1.1910 0.000850 1.1850

97.5th Percentile(P97.5) 0.002321 1.3600 0.002475 1.3530

Maximum 0.007013 1.6420 0.011650 1.6500

Mode 0.000232 1.1100 0.000254 1.1017

Skewness 2.812512 0.2051 3.994323 0.1271

95% Credible Interval (7.620e-05, 0.00232) (0.8798, 1.36) (8.098e-05, 0.0025) (0.875, 1.353)

95% HPD Credible Interval (1.129e-05, 0.00184) (0.8691, 1.345) (2.78e-05, 0.00196) (0.8687, 1.345)

Highest probability density (HPD):  The algorithm
described by Chen and Shao (1999) is used to compute
the HPD intervals under the assumption of unimodal
marginal posterior distribution
(b) Visual summary
Box plots
The boxes represent inter-quartile ranges and the solid

Fig. 11.    The boxplots for alpha and beta

black line at the (approximate) centre of each box is
the median; the arms of each box extend to cover the
central 95 per cent of the distribution - their ends
correspond, therefore, to the 2.5% and 97.5% quantiles.
(Note that this representation differs somewhat from
the traditional.)
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Kernel density estimates

Histograms can provide insights on skewness, behaviour in the tails, presence of multi-modal behaviour, and data
outliers; histograms can be compared to the fundamental shapes associated with standard analytic distributions.

Figure 12 gives the visual summary based on MCMC
output for the parameters. We have plotted histogram,
the kernel density estimate, 95% HPD intervals and
actual realizations along x-axis (“rug” plot) for α (left
panel) and β (right panel). The kernel density estimates
have been drawn using R with the assumption of
Gaussian kernel and properly chosen values of the
bandwidths. It can be seen that β is symmetric whereas
α shows positive skewness.

Comparison with MLE

We have used graphical method for the comparison of
Bayes estimates with ML estimates. In Fig. 13, the

Fig. 13. The density functions using ML and Bayesian estimates

Fig. 12.   Kernel density estimate and HPD intervals of α (left panel) and β(right panel)

density functions  using MLEs and
Bayesian estimates, computed via MCMC samples
under gamma priors, are plotted. It is clear from the
Fig. 13 that the MLEs and the Bayes estimates with
respect to the gamma priors are quite close and fit the
data very well.

Fig. 14. Density estimates

A further support for this finding can be obtained by
inspecting the Fig. 14. In Figure 14, we have plotted
25th, 50th and 97.5th quantiles of the estimated density
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based on MCMC sample .
Here, the density is computed at each data point for
7000 posterior samples. The density corresponding to
MLE has been plotted using the “plug-in” estimates
of the parameters. It shows that we have a fairly good
model for the given data set.

Estimation of reliability function

In this section, our main aim is to demonstrate the
effectiveness of proposed methodology. For this we
have estimated the reliability function using MCMC
samples under gamma priors. Since we have an
effective MCMC technique, we can estimate any
function of the parameters. We have used the Kaplan-
Meier estimate of the reliability function to make the
comparison more meaningful. The Fig. 15 exhibits the
estimated reliability function (dashed blue line: 2.5th

and 97.5th quantiles; solid red line: 50th quantile) using
Bayes estimate based on MCMC output under
independent gamma priors for both the parameters and
the empirical reliability function (black solid line). The
Fig. 15 shows that reliability estimate based on MCMC
is very closed to the empirical reliability estimates.

Fig. 15. Reliability function estimate using MCMC and
Kaplan-Meier estimate

Estimation of hazard and reliability  at
X(7) : t = 5.009

The advantage of using the MCMC method over the
MLE method is that we can always obtain a reasonable
interval estimate of the parameters by constructing

the probability intervals based on the empirical
posterior distribution. This is often unavailable in
maximum likelihood estimation. Indeed, the MCMC
samples may be used to completely summarize the
posterior uncertainty about the parameters α and β
through a kernel estimate of the posterior distribution.
This is also true of any function of the parameters,
e.g., reliability and hazard functions. Suppose we wish
to give point and interval estimates for reliability  and
hazard functions at the mission time t=5.009 ( at the 7th

observed data point).

The marginal posterior density estimates of the
reliability and hazard functions and their histograms
based on samples of size 7000 are shown in Fig. 16 and

Fig. 16.  Visual summary of α

17 using the Gaussian kernel. It is evident from the
estimates that the marginal distribution of reliability is
negatively skewed whereas hazard is positively skewed.

Fig. 17.  Visual summary of α
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The MCMC results of the posterior mean, median,
mode, standard deviation(SD)and skewness of
reliability and hazard functions are displayed in Table

Fig. 18. MCMC output of h(t = 5.009) and R(t = 5.009). Dashed line(...) represents the posterior median and solid lines
(-) represent lower and upper bounds of 90% probability intervals (HPD)

3 The ML estimates of reliability and hazard function
at t=5.009 are computed using invariance property of
the MLE.

Table 3.   Posterior summary of hazard and reliability

Parameters MLE                                      Based on MCMC output

Mean Median Mode Sd Skewness

h(t = 5.009) 0.1162 0.1173 0.1155 0.1113 0.0268 0.4304

R(t = 5.009) 0.9027 0.9003 0.9032 0.9069 0.0321 -0.6168

A trace plot is a plot of the iteration number against
the value of the draw of the parameter at each
iteration. Fig. 18 display 7000 chain values for the
reliability R(t=5.009) and hazard h(t=5.009)
functions, with their sample median and 90%
credible intervals.

Model Compatibility
Posterior Predictive Checks
A natural way to assess the fit of a Bayesian model is
to look at how well the predictions from the model
agree with the observed data Gelman (2003) and Gelman
et al. (2004). We do this by comparing the posterior
predictive simulations with the data.

Fig. 19. Density estimates of the two smallest order future observations, vertical lines represent corresponding observed values
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There are several approaches available for the study
of model compatibility in Bayesian framework.
Predictive simulation is an easiest and flexible one.
The basic idea of studying the model compatibility
through predictive simulation is to compare the
observed data or some function of it with the data that
would have been anticipated from the assumed model
called the predictive data. If the two data sets compare
favourably, the assumed model can be considered to

Fig. 20. Density estimates of the two largest order future observations, vertical lines represent corresponding observed values

be an appropriate choice for the data in hand, Gupta et
al. (2008). Modern Bayesian computational tools
however provide straightforward solutions as one can
easily simulate predictive samples if MCMC outputs
are available from the posterior corresponding to the
assumed model. Most of the standard numerical and
graphical methods based on predictive distribution
can then be easily implemented to study the
compatibility of the model.

Comparison of empirical distribution function plots
based on the observed and the predictive data may be
considered as an informal way to check discrepancies
between the data and the model.

To obtain further clarity on our conclusion for the
study of model compatibility, we have considered
plotting of density estimates of two smallest and two
largest replicated future observations from the model
with superimposed corresponding observed data. For
this purpose, 5000 samples have been drawn from
the posterior using MCMC procedure and then
obtained predictive samples from the model under
consideration using each simulated posterior sample.
The size of predictive samples is same as that of
observed data.

The MCMC results of the posterior mean, median,
mode of two smallest (X(1) and X(2))  and two largest

(X(58) and X(59)) are displayed in Table 4.

Table 4. Posterior characteristics

Observed Mode Mean Median

X(1) 2.997 2.978 2.917 3.325

X(2) 4.137 3.868 3.816 4.144

X(58) 10.491 10.277 10.362 10.54

X(59) 11.038 11.381 11.469 11.65

Density estimates based on replicated future data sets
are shown in Figure 19 and Fig. 20. Fig. 20 represents
the estimates corresponding to largest two predictive
observations, whereas the same for smallest two
observations is shown in Fig. 19. The corresponding
observed values are also shown by means of
vertical lines.
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Fig. 21. Q-Q plot of predictive quantiles versus empirical
quantiles

In fact, we have predicated the entire data set.   Fig. 21
represents the Q-Q plot of predicted quantiles vs.
observed quantiles.  We, therefore, conclude that the
Perks model is compatible with the given data set.

We have discussed the Markov chain Monte Carlo
(MCMC) method to compute the Bayesian estimates
the parameters, hazard and reliability functions of Perks
distribution based on a complete sample. We have
obtained the probability intervals for parameters,
hazard and reliability functions. We have presented
the model compatibility via the posterior predictive
check method.  The MCMC method provides an
alternative method for parameter estimation of the
Perks distribution. It is more flexible when compared
with the traditional methods such as MLE method.
Moreover, ‘exact’ probability intervals are available
rather than relying on estimates of the asymptotic
variances. Indeed, the MCMC sample may be used to
completely summarize posterior distribution about the
parameters, through kernel estimation. This is also true
for any function of the parameters such as reliability
and hazard functions.

We have applied the developed techniques on a real
data set. Thus, the tools developed can be applied for
full Bayesian analysis of Perks distribution.
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