Nepal Journal of Science and Technology 12 (2011) 252-259

On Vector Valued Paranormed Sequence Space *I*_w(X,M, τ, p,L) Defined by Orlicz Function

Narayan Prasad Pahari

Trichandra Campus, Tribhuvan University,Kathmandu email : nppahari @ yahoo.com

Abstract

The aim of this paper is to introduce and study new classes $l_{\infty}(X, M, \overline{\lambda}, \overline{p})$ and $l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L)$ of vector valued sequences by using Orlicz function M. We examine conditions pertaining the containment relation of the class $l_{\infty}(X, M, \overline{\lambda}, \overline{p})$ and explore the linear topological structure of vector valued sequence space $l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L)$.

2010AMS Subject Classification: Primary 46A45, Secondary - 46B15

Keywords: Orlicz Function, Paranormed Space, Normal Space, Sequence Space.

Introduction:

Before proceeding with the main results we recall some terminology and notations. An Orlicz function is a function $M : [0, \infty) \rightarrow [0, \infty)$ which is continuous, non decreasing and convex with M(0) = 0, M(u) > 0 for u > 0 and $M(u) \rightarrow \infty$ as $u \rightarrow \infty$. An Orlicz function satisfies the inequality $M(\alpha u) \leq \alpha M(u)$ for all α satisfying $0 < \alpha < 1$. An Orlicz function M is said to satisfy Δ_2 -condition for all values of $u \geq 0$, if there exists a constant K > 0 such that $M(2u) \leq KM(u)$. The Δ_2 -condition is equivalent to the satisfaction of inequality $M(ru) \leq K r M(u)$ for all values of u and for r > 1, (see, Krasnosel'skii, M.A. *et al.* (1961)).

Lindentrauss and Tzafriri (1971) used the notion of Orlicz function to construct the Orlicz sequence space

$$l_{M} = \left\{ \overline{\eta} = (\eta_{k}) \in \omega : \sum_{k=1}^{\infty} M\left(\frac{|\eta_{k}|}{\rho}\right) < \infty \text{ for some } \rho > 0 \right\}$$

of scalars , which forms a Banach space with Lux emburg norm defined by

$$\| \overline{\eta} \|_{M} = \inf \left\{ \rho > 0; \sum_{k=1}^{\infty} M\left(\frac{|\eta_{k}|}{\rho}\right) \le 1 \right\}.$$

Subsequently Parashar and Choudhary (1994), Ghosh and Srivastava (1999), Rao and Subramanian (2004), Tripathy *et al* (2005), Karakaya(2005), Savas and Patterson(2005), Khan (2008), Basariv and Altundag (2009) and many others have studied the algebraic and topological properties of sequence spaces defined by Orlicz functions.

Let X be a normed space over C, the field of complex numbers. Let $\omega(X)$ denote the linear space of all sequences $\overline{x} = (x_k)$ with $x_k \in X$, $k \ge 1$ with usual coordinate wise operations i.e., $\overline{x} + \overline{y} = (x_k + y_k)$ and $\alpha \overline{x} = (\alpha x_k)$, for each \overline{x} , $\overline{y} \in \omega(X)$ and $\alpha \in C$. We shall denote $\omega(C)$ by ω . Thus if $\overline{\lambda} = (\lambda_k) \in \omega$ and $\overline{x} \in \omega(X)$ then we shall write $\overline{\lambda} \overline{x} = (\lambda_k x_k)$.

The notion of paranormed spaces is closely related to linear metric spaces. (Wilansky (1978). A linear topological space X over R is said to be a paranormed space if there is a sub additive function $G: X \to R$ (called paranorm on X) satisfying G(0) = 0, G(-x) = G(x) for all $x \in X$ and if (α_n) is a sequence of scalars with $\alpha_n \to \alpha$ as $n \to \infty$ and (x_n) is a sequence of vectors with $G(x_n - x) \to 0$ as $n \to \infty$, then $G(\alpha_n x_n - \alpha x) \to 0$ as $n \to \infty$ (continuity of scalar multiplication). A paranorm G for which G(x) = 0 implies x = 0 is called **total**

Note that the continuity of scalar multiplication is equivalent to

- (i) if G (x_n) → 0 and α_n → α as n → ∞, then G (α_nx_n) → 0 as n → ∞ and
- (ii) if α_n→ 0 as n→∞ and x be any element in X, then G(α_n x) → 0, (Wilansky 1978).

A sequence space S is said to be normal if

 $\overline{x} = (x_k) \in S$ and $\overline{\alpha} = (\alpha_k)$ a sequence of scalars with

 $|\alpha_k| \le 1$, for all $k \ge 1$, then $\overline{\alpha} \overline{x} = (\alpha_k x_k) \in S$.

Following inequality has been used throughout this paper :

 $|a+b|^n \le |a|^n + |b|^n$, where $a, b \in \mathbb{C}, 0 \le n \le 1$.

The Classes $l_{\omega}(X,M, \overline{\lambda}, \overline{p}, L)$ and $l_{\omega}(X,M, \overline{\lambda}, \overline{p})$ of Vector Sequences

Let $\overline{p} = (p_k)$ and $\overline{q} = (q_k)$ be any sequences of strictly

positive real numbers and $\overline{\lambda} = (\lambda_k)$ and $\overline{\mu} = (\mu_k)$ be sequences of non zero complex numbers. Assume that $0 < l \le \inf_k p_k \le \sup_k p_k = L < \infty$.

We now introduce the following classes of Banach space X- valued sequences

$$l_{\infty}(X, \mathcal{M}, \overline{\lambda}, \overline{p}) = \{\overline{x} = (x_k) : x_k \in X \text{ and } \mathcal{M}\left(\frac{||\lambda_k x_k||^{p_k}}{\rho}\right)$$

< ∞ .for some $\rho > 0$ }

and
$$l_{\infty}(X, \mathcal{M}, \overline{\lambda}, \overline{\rho}, L) = \{\overline{x} = (x_k) : x_k \in X \text{ and} M\left(\frac{||\lambda_k x_k||^{p_k} / L}{\rho}\right) < \infty, \text{ for some } \rho > 0\}.$$

Clearly $l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L)$ is a subset of $l_{\infty}(X, M, \overline{\lambda}, \overline{p})$.

Further when $p_k = 1$ for all k, then $l_{\infty}(X, M, \overline{\lambda}, \overline{p})$ will be denoted by $l_{\infty}(X, M, \overline{\lambda})$ and when $\lambda_k = 1$ for all k, then $l_{\infty}(X, M, \overline{\lambda}, \overline{p})$ will be denoted by $l_{\infty}(X, M, \overline{p})$. If $p_k = \lambda_k = 1$ for all k, then the class $l_{\infty}(X, M, \overline{\lambda}, \overline{p})$ will be denoted by $l_{\infty}(X, M)$.

The Class $l_{\infty}(X, M, \overline{\lambda}, \overline{p})$

In this section, we investigate some inclusion relations

between the classes $l_{\omega}(X, M, \overline{\lambda}, \overline{p})$ arising in terms of

different
$$\overline{p}$$
 and λ . Throughout, we shall denote

$$t_k = \left| \frac{\lambda_k}{\mu_k} \right|^{r_k}, r_k = \frac{1}{p_k^2}, s_k = \frac{1}{q_k}, k \ge 1.$$

Lemma 3.1: $l_{\omega}(X,M, \overline{\lambda}, \overline{p}) \subset l_{\omega}(X,M, \overline{\mu}, \overline{p})$ if and only if $\lim \inf_k t_k > 0$.

Proof:

SU

For the sufficiency, assume that $\lim \inf_k t_k > 0$. Then there exists m > 0 such that $m |\mu_k|^{p_k} < |\lambda_k|^{p_k}$ for all sufficiently large values of k.

Let
$$\overline{x} = (x_k) \in l_{\infty}(X, M, \overline{\lambda}, \overline{p})$$
, then for some $\rho > 0$,

$$\sup_{k} M\left(\frac{||\lambda_k x_k||^{p_k}}{\rho}\right) < \infty.$$

Now we choose $\rho_1 > 0$ such that $\rho \le m\rho_1$. Since *M* is non decreasing, we have

$$\begin{split} \sup_{k} M\left(\frac{||\mathcal{A}_{k} x_{k}||^{p_{k}}}{\rho_{1}}\right) &= \sup_{k} M\left(\frac{|\mathcal{A}_{k}|^{p_{k}} ||x_{k}||^{p_{k}}}{\rho_{1}}\right) \\ &\leq \sup_{k} M\left(\frac{|\lambda_{k}|^{q_{k}} ||x_{k}||^{p_{k}}}{m\rho_{1}}\right) \\ &\leq \sup_{k} M\left(\frac{||\lambda_{k} x_{k}||^{p_{k}}}{\rho}\right) < \infty \end{split}$$

showing that $\overline{x} \in l_{\infty}(X, M, \overline{\mu}, \overline{p})$ and hence

$$l_{\infty}(X,M,\overline{\lambda},\overline{p}) \subset l_{\infty}(X,M,\overline{\mu},\overline{p})$$

For the necessity, assume that

 $l_{\infty}(X,M, \overline{\lambda}, \overline{p}) \subset l_{\infty}(X,M, \overline{\mu}, \overline{p})$ holds but $lim inf_k t_k = 0$. So that we can find a sequence (k(n)) of integers such that $k(n+1) > k(n) \ge 1$, $n \ge 1$, satisfying

 $n |\lambda_{k(n)}|^{P_{k(n)}} < |\mu_{k(n)}|^{P_{k(n)}}$, for all $n \ge 1$.

Corresponding to $u \in X$ with || u || = 1, we define a sequence $\overline{x} = (x_k)$ by

$$x_k = \lambda_{k(n)} \stackrel{\text{or}}{\longrightarrow} u, \text{ for } k = k(n), n \ge 1$$

= 0. otherwise.

Let $\rho > 0$. Then for k = k(n), $n \ge 1$, using convexity of M we have

$$\sup_{k} M\left(\frac{||\lambda_{k} x_{k}||^{p_{k}}}{\rho}\right) = \sup_{n} M\left(\frac{||\mathbf{u}||^{p_{k(n)}}}{\rho}\right)$$
$$= M\left(\frac{I}{\rho}\right) < \infty,$$
and
$$\sup_{k} M\left(\frac{||\lambda_{k} x_{k}||^{p_{k}}}{\rho}\right) = 0, \text{ otherwise},$$

showing that $\overline{x} \in l_{\infty}(X, M, \overline{\lambda}, \overline{p})$. But on the other hand, for any p > 0 and $k = k(n), n \ge 1$, we have

$$\sup_{\tilde{k}} M\left(\frac{||\mu_{k} x_{k}||^{p_{\tilde{k}}}}{\rho}\right) = \sup_{n} M\left(\frac{||\frac{\mu_{k(n)}}{\lambda_{k(n)}} u ||^{p_{k(n)}}}{\rho}\right)$$
$$= \sup_{n} M\left(\left|\frac{\mu_{k(n)}}{\lambda_{k(n)}}\right|^{p_{k(n)}}\frac{1}{\rho}\right)$$
$$\geq \sup_{n} M\left(\frac{n}{\rho}\right) = \infty ,$$

showing that $\overline{x} \notin l_{\infty}(X, M, \overline{\mu}, \overline{p})$, a contradiction. This completes the proof.

Lemma 3.2: $l_{\infty}(X,M,\overline{\mu},\overline{p}) \subset l_{\infty}(X,M,\overline{\lambda},\overline{p})$ if and only if $\lim sup_k t_k < \infty$.

Proof:

For the sufficiency, assume that $\lim \sup_k t_k < \infty$. Then we can find a positive number T such that

 $T |\mu_k|^{p_k} > |\lambda_k|^{p_k}$ for all sufficiently large values of k. Then analogous to the Lemma 3.1, the result follows For the necessity, suppose that

 $l_{\infty}(X, M, \overline{\mu}, \overline{p}) \subset l_{\infty}(X, M, \overline{\lambda}, \overline{p})$ holds but $\limsup_k t_k = \infty$. Then there exists a sequence $(\lambda(n))$ of positive integers satisfying $k (n + 1) > k(n) \ge 1$, $n \ge 1$, for which

$$\left|\frac{\lambda_{k(n)}}{\mu_{k(n)}}\right|^{P_{k(n)}} > n$$
, for all $n \ge 1$.

Now, corresponding to $u \in X$ with ||u|| = 1, define

a sequence
$$\overline{x} = (x_k)$$
 by
 $x_k = \mu_{k(n)}^{-1} u$, for $k = k(n), n \ge 1$
 $= 0$, otherwise.

Let $\rho > 0$. Then for k = k(n), $n \ge 1$ and using convexity of M, we have

$$\sup_{k} M\left(\frac{||\mu_{k} x_{k}||^{p_{k}}}{\rho}\right) = \sup_{n} M\left(\frac{||\mathbf{u}||^{p_{k}(n)}}{\rho}\right)$$
$$= M\left(\frac{1}{\rho}\right) < \infty,$$
and
$$\sup_{k} M\left(\frac{||\mu_{k} x_{k}||^{p_{k}}}{\rho}\right) = 0, \text{ otherwise,}$$

and $\frac{1}{k}M\left(\frac{\rho}{\rho}\right) = 0$, otherwise

which shows that $\overline{x} \in l_{\infty}(X, M, \overline{\mu}, \overline{p})$. But on the other hand for any $\rho > 0$ and k = k(n), $n \ge 1$, we have

$$\sup_{k} M\left(\frac{||\lambda_{k} x_{k}||^{p_{k}}}{\rho}\right) = \sup_{n} M\left(\frac{||\frac{\lambda_{k(n)}}{\mu_{k(n)}} \mathbf{u}||^{p_{k}(p)}}{\rho}\right)$$
$$= \sup_{n} M\left(\left|\frac{\lambda_{k(n)}}{\mu_{k(n)}}\right|^{n_{k(n)}}\frac{1}{\rho}\right)$$
$$\geq \sup_{n} M\left(\frac{\mathbf{n}}{\rho}\right) = \infty ,$$

showing that $\overline{x} \notin l_{\infty}(X, \mathcal{M}, \overline{\lambda}, \overline{p})$, a contradiction. This completes the proof. On combining the Lemmas 3.1 and 3.2, we get

Theorem 3.3: $l_{\infty}(X,M, \overline{\lambda}, \overline{p}) = l_{\infty}(X,M, \overline{\mu}, \overline{p})$ if and only if $0 < \lim \inf_k t_k < \limsup_k t_k < \infty$. Corollary 3.4:

- (i) l_∞(X,M, λ, p) ⊂ l_∞(X,M, p) if and only if lim inf_k |λ_k|^p > 0;
- (ii) l_∞ (X,M, p̄) ⊂ l_∞ (X,M, λ̄, p̄) if and only if lim sup_k |λ_k|^p_k < ∞;
- (iii) $l_{\infty}(X,M, \overline{\lambda}, \overline{p}) = l_{\infty}(X,M, \overline{p})$ if and only if $0 < \lim n n f_k |\lambda_k|^{p_k} \leq \lim n n h_k |\lambda_k|^{p_k} < \infty$

Proof:

By taking $\mu_k = 1$ for all k , in Lemmas 3.1 ,3.2 and Theorem 3.3 , the assertions (i),(ii) and (iii) follow.

Lemma 3.5: $l_{\infty}(X,M, \overline{\lambda}, \overline{p}) \subset l_{\infty}(X,M, \overline{\lambda}, \overline{q})$

if and only if *lim*
$$sup_k \frac{q_k}{p_k} < \infty$$
.

Proof:

For the sufficiency, assume that $\lim \sup_k \frac{q_k}{p_k} < \infty$ Then there exists T > 0 such that $q_k < T p_k$ for all sufficiently large values of k. Let $\overline{x} = (x_k) \in l_{\infty}(X, M, \overline{\lambda}, \overline{p})$.

Then for some $\rho > 0$, $\sup_{k} M\left(\frac{||\lambda_{k} x_{k}||^{p}}{\rho}\right) < \infty$.

Hence we can find a real number N > 1 satisfying

 $M\left(\frac{||\lambda_k x_k||^{\rho_k}}{\rho}\right) < M\left(\frac{N}{\rho}\right), \text{ for all sufficiently large values of }k.$ Since M is non decreasing, therefore

 $||\lambda_{\perp} x_{\perp}||^{p_{k}} \leq \mathbf{N}. \text{ This implies that } ||\lambda_{\perp} x_{\perp}||^{q_{k}} \leq \mathbf{N}^{T}.$

Hence,
$$\frac{sup}{k} M\left(\frac{||A_kA_k||^{-\kappa}}{\rho}\right) \leq M\left(\frac{1}{\rho}\right) < \infty$$
,

for all sufficiently large values of k and hence

 $\overline{x} \in I_{\infty}(X, M, \overline{\lambda}, \overline{q})$. Hence $I_{\infty}(X, M, \overline{\lambda}, \overline{p}) \subset I_{\infty}(X, M, \overline{\lambda}, \overline{q})$. For the necessity, suppose that the inclusion holds but $\lim \sup_{k} \frac{q_k}{p_k} = \infty$. Then there exists a sequence (k(n))of positive integers such that $k(n+1) > k(n) \ge 1$, $n \ge 1$, for which $q_{k(n)} > np_{k(n)}$ for all $n \ge 1$.

Corresponding to $u \in X$ with ||u|| = 1, we define a sequence $\overline{x} = (x_k)$ by $x_k = \lambda_{k/9}^{-1} 2^{n_k(n)} u$, for $k = k(n), n \ge 1 = 0$, otherwise. So that for each $n \ge 1$, k = k(n) and some $\rho > 0$, we have

$$\begin{split} \sup_{k} & M\left(\frac{||\lambda_{k} x_{k}||^{p_{k}}}{\rho}\right) = \sup_{n} & M\left(\frac{||2^{1/p_{k}(h)} u ||^{p_{k}(h)}}{\rho}\right) \\ & = \sup_{n} & M\left(\frac{2||u||^{p_{k}(h)}}{\rho}\right) \\ & = & M\left(\frac{2}{\rho}\right) < \infty, \\ \text{and} & \sup_{k} & M\left(\frac{||\lambda_{k} x_{k}||^{p_{k}}}{\rho}\right) = 0, \text{otherwise}, \end{split}$$

showing that $\overline{x} \in l_{\infty}(X, M, \overline{\lambda}, \overline{p})$. But for each k = km, $n \ge 1$, we have

$$\sup_{n} M\left(\frac{||\lambda_k x_k||^{q_k}}{\rho}\right) = \sup_{n} M\left(\frac{||2^{1/p_k(t)} u||^{q_k(t)}}{\rho}\right)$$

Since, $q_{k(t)} / p_{k(t)} > n$ i.e. $2^{q_k(t)/p_k(t)} > 2^n$.

Since M is non decreasing, we have

$$\sup_{k} M\left(\frac{||\lambda_{k} x_{k}||^{q_{k}}}{\rho}\right) \geq \sup_{n} M\left(\frac{2^{n}||u||^{q_{h}(q)}}{\rho}\right)$$
$$= \sup_{n} M\left(\frac{2^{n}}{\rho}\right) = \infty.$$

This shows that $\overline{x} \notin l_{\infty}$ $(X, M, \overline{\lambda}, \overline{q})$, a contradiction. Hence the proof is complete.

Lemma 3.6:
$$l_{\omega}(X,M, \overline{\lambda}, \overline{q}) \subset l_{\omega}(X,M, \overline{\lambda}, \overline{p})$$

if and only if $\lim \inf_k \frac{q_k}{p_k} > 0$.

Proof:

For the sufficiency, assume that $lim inf_k \frac{q_k}{p_k} > 0$. Then there exists a positive constant m such that $q_k > m p_k$, for all sufficiently large values of k.

Let $\overline{x} = (x_k) \in l_{\infty}(X, M, \overline{\lambda}, \overline{q})$. Then for some $\rho > 0, \frac{\sup_k M(|\lambda_k x_k||^{q_k})}{p} < \infty$.

This shows that there exists a real number N > 1satisfying

 $M\left(\frac{||\lambda_k x_k||^{q_k}}{\rho}\right) < M\left(\frac{N}{\rho}\right)$, for all sufficiently large

values of k Since M is non decreasing, therefore $||\lambda_k x_k||^{q_k} < N$ and so $||\lambda_k x_k||^{p_k} < N^{1/m}$, for sufficiently large values of k Hence using the convexity of M, we have

$$\sup_{k} M\left(\frac{||\lambda_{k} x_{k}||^{p_{k}}}{\rho}\right) \leq M\left(\frac{N^{1/m}}{\rho}\right) < \infty.$$

This implies that $\overline{x} \in l_{\infty}(X,M,\overline{\lambda},\overline{p})$ and hence

$$l_{\infty}(X, M, \overline{\lambda}, \overline{q}) \subset l_{\infty}(X, M, \overline{\lambda}, \overline{p})$$
.
For the necessity, assume that

 $l_{\infty}(X,M, \overline{\lambda}, \overline{q}) \subset l_{\infty}(X,M, \overline{\lambda}, \overline{p})$ but $\lim \inf_{k} \frac{q_{k}}{p_{k}} = 0$. Then there exists a sequence (k(n)) of positive integers such that $k(n+1) > k(n) \ge 1$, for which $n q_{k(n)} < p_{k(n)}$ for each $n \ge 1$.

Corresponding to $u \in X$ with ||u|| = 1, we define a sequence $\overline{x} = (x_k)$ by $x_k = \lambda_{k(n)}^{-1} 2^{\frac{1}{2k(n)}} u$, for $k = k(n), n \ge 1 = 0$, otherwise.

So that for each $n \ge 1$, k = k(n) and some $\rho > 0$, we have

$$\sup_{k} M\left(\frac{||\lambda_{k} x_{k}||^{q_{k}}}{\rho}\right) = \sup_{n} M\left(\frac{||2^{1/q_{k}(q)} u||^{q_{k}(q)}}{\rho}\right)$$
$$= \sup_{n} M\left(\frac{2||u||^{q_{k}(q)}}{\rho}\right)$$
$$= M\left(\frac{2}{\rho}\right) < \infty,$$

and
$$\frac{\sup}{k} M\left(\frac{||\lambda_k x_k||^{q_k}}{\rho}\right) = 0$$
, for $k \neq k(n)$, $n \ge 1$,

showing that $\overline{x} \in l_{\infty}(X, M, \overline{\lambda}, \overline{q})$. But for each k = k(n), $n \ge 1$, we have

$$\begin{split} \sup_{k} M\left(\frac{||\lambda_{k} x_{k}||^{p_{k}}}{\rho}\right) &= \sup_{n} M\left(\frac{||2^{1/q_{k}(p)} \mathbf{u}||^{p_{k}(p)}}{\rho}\right) \\ &= \sup_{n} M\left(\frac{2^{\operatorname{Pl}_{k}(n)/\operatorname{Pl}_{k}(n)}}{\rho} ||u||^{\operatorname{Pl}_{k}(n)}\right) \\ &\geq \sup_{n} M\left(\frac{2^{n}}{\rho}\right) &= \infty. \end{split}$$

This shows that $\overline{x} \notin l_{\infty}(X,M, \overline{\lambda}, \overline{p})$, a contradiction. This completes the proof.

On combining the Lemmas 3.5 and 3.6, one obtain

Theorem 3.7:
$$l_{\varpi}(X,M,\overline{\lambda},\overline{p}) = l_{\varpi}(X,M,\overline{\lambda},\overline{q})$$

if and only if
$$0 < lim$$
 inf $k \frac{q_k}{p_k} \le lim$ sup $k \frac{q_k}{p_k} < \infty$.

Corollary 3.8:

- (i) l_∞(X,M,λ) ⊂ l_∞(X,M,λ,p̄) if and only if limsup k pk <∞;
- (ii) $l_{\infty}(X,M,\overline{\lambda},\overline{p}) \subset l_{\infty}(X,M,\overline{\lambda})$ if and only if $\lim \inf_k p_k > 0$;

(iii)
$$l_{\infty}(X,M,\overline{\lambda},\overline{p}) = l_{\infty}(X,M,\overline{\lambda})$$
 if and only if
 $0 < \liminf_k p_k \leq \limsup_k p_k < \infty$.

Proof:

The proof follows by taking $p_k = 1$ for all k and \overline{q} is replaced by \overline{p} in the Lemmas 3.5 and 3.6 and Theorem 3.7.

Theorem 3.9: $l_{\omega}(X,M, \overline{\lambda}, \overline{p}) \subset l_{\omega}(X,M, \overline{\mu}, \overline{q})$ if and only if

(i)
$$\lim \inf_k t_k > 0$$
 and (ii) $\lim \sup_k \frac{q_k}{p_k} < \infty$

Proof:

Proof of the theorem follows immediately from the Lemmas 3.1 and 3.5.

In the following example, we show that $l_{\infty}(X, M, \overline{\lambda}, \overline{p})$

may strictly be contained in $l_{\infty}(X, M, \overline{\mu}, \overline{q})$ in spite of the conditions (i) and (ii) of Theorem 3.9 are satisfied.

Example 3.10

Let X be a Banach space and consider a sequence

 $\overline{x} = (x_k)$ in X. Consider $u \in X$ such that ||u|| = 1 and define $x_k = k^k u$, if k = 1, 2, 3, ...

Further, let $p_k = k^{-1}$, if k is odd integer, $p_k = k^{-2}$, if k is even integer, $q_k = k^{-2}$ for all values of k, $\lambda_k = 3^k$, $\mu_k = 2^k$ for all values of k. Then $t_k = \left|\frac{\lambda_k}{\mu_k}\right|^{p_k} = \frac{3}{2}$ or $\left(\frac{3}{2}\right)^{1/k}$ according as k is odd or even integer and hence lim inf_k $t_k = 1 > 0$. Further, $\frac{q_k}{p_k} = \frac{1}{k}$ if k is odd integer, $\frac{q_k}{p_k} = 1$, if k is even integer.

Therefore $\lim \sup_k \frac{q_k}{p_k} = 1 < \infty$. Hence the conditions (i) and (ii) of Theorem 3.9 are satisfied. Now, for some $\rho > 0$, we have

$$\sup_{k} M\left(\frac{||\mu_{k} x_{k}||^{q}_{k}}{\rho}\right) = \sup_{k} M\left(\frac{||2^{k} k^{k} u ||^{1k^{2}}}{\rho}\right)$$
$$= \sup_{k} M\left(\frac{(2k)^{1/k}}{\rho} ||u ||^{1k^{2}}\right)$$
$$\leq \sup_{k} M\left(\frac{(2k)^{1/k}}{\rho}\right) < \infty,$$

showing that $\overline{x} \in l_{\infty}(X, M, \overline{\mu}, \overline{q})$. But for k an odd integer,

$$\begin{split} \sup_{k} & M\left(\frac{||\lambda_{k}x_{k}||^{p_{k}}}{\rho}\right) = \sup_{k} & M\left(\frac{||\beta^{k}k^{k}u||^{2h}}{\rho}\right) \\ & = \sup_{k} & M\left(\frac{3k}{\rho}\right) = \infty. \end{split}$$

This implies that $\overline{x} \notin l_{\infty}$ $(X,M, \overline{\lambda}, \overline{p})$. Thus, the containment of l_{∞} $(X,M, \overline{\lambda}, \overline{p})$ in $l_{\infty}(X,M, \overline{\mu}, \overline{q})$ is strict inspite of the satisfaction of the conditions (i) and (ii) of the Theorem 3.9.

Linear Topological Structure of $l_{av}(X,M, \overline{\lambda}, \overline{p}, L)$

In this section, we shall investigate some theorems that characterize the linear topological structure of the space $l_{\infty}(X, \mathcal{M}, \overline{\lambda}, \overline{p}, L)$ as defined earlier by endowing it a suitable paranorm.

Theorem 4.1: l_∞(X,M, λ, p) forms a linear space over C if and only if sup_kp_k <∞.</p>

Proof:

Let \overline{x} , $\overline{y} \in l_{\infty}(X, M, \overline{\lambda}, \overline{p})$ and $\alpha, \beta \in C$. Then there exist $\rho_1 > 0$ and $\rho_2 > 0$ such that

$$\sum_{k}^{sup} M\left(\frac{||\lambda_{k} x_{k}||^{p_{k}}}{\rho_{1}}\right) < \infty \quad \text{and} \quad \sum_{k}^{sup} M\left(\frac{||\lambda_{k} y_{k}||^{p_{k}}}{\rho_{2}}\right) < \infty.$$

Let us choose $\rho > 0$ satisfying $2\rho_1 \max(1, |\alpha|) \le \rho$ and $2\rho_2 \max(1, |\beta|) \le \rho$.

For such ρ , using non decreasing and convex properties of M, we have

$$\begin{split} \sup_{k} & M\left(\frac{||\lambda_{k} (\alpha x_{k} + \beta y_{k})||^{p_{k}}}{\rho}\right) \\ &\leq \sup_{k} & M\left(\frac{||\alpha \lambda_{k} x_{k}||^{p_{k}} + ||\beta \lambda_{k} y_{k}||^{p_{k}}}{\rho}\right) \\ &= \sup_{k} & M\left(\frac{|\alpha|^{p_{k}} ||\lambda_{k} x_{k}||^{p_{k}}}{\rho} + \frac{|\beta|^{p_{k}} ||\lambda_{k} y_{k}||^{p_{k}}}{\rho}\right) \\ &\leq \sup_{k} & M\left(\frac{1}{2\rho_{l}} ||\lambda_{k} x_{k}||^{p_{k}} + \frac{1}{2\rho_{2}} ||\lambda_{k} y_{k}||^{p_{k}}\right) \\ &\leq \frac{1}{2} \sup_{k} & M\left(\frac{||\lambda_{k} x_{k}||^{p_{k}}}{\rho_{l}}\right) + \frac{1}{2} \sup_{k} & M\left(\frac{||\lambda_{k} y_{k}||^{p_{k}}}{\rho_{2}}\right) \end{split}$$

< ∞,

This implies that $l_{\infty}(X, M, \overline{\lambda}, \overline{p})$ forms a linear space over C.

For the necessity, suppose that $l_{\infty}(X, M, \overline{\lambda}, \overline{p})$ is a linear space over C but $\lim \sup_{k} p_k = \infty$. Then there exists a sequence (k(n)) of positive integers satisfying $k (n + 1) > k(n) \ge 1$, $n \ge 1$, for which $p_{k(n)} > n$, for each $n \ge 1$.

Now, corresponding to $u \in X$ with ||u|| = 1, we

define a sequence $\overline{x} = (x_k)$ by

$$x_k = \lambda_{k(n)}^{-1} u$$
, for $k = k(n), n \ge 1$
= 0, otherwise.

Then as in Theorem 3.2, we can show that

 $\overline{x} \in l_{\infty}(X, M, \overline{\lambda}, \overline{p})$. On the other hand for any $\rho > 0$ and scalar $\beta = 4$, we get

$$M\left(\frac{|\lambda_k \beta x_k||^{p_k}}{\rho}\right) = M\left(\frac{|4 u||^{p_k e_p}}{\rho}\right)$$

$$\geq M\left(\frac{4^n}{\rho}\right)$$

$$\geq M\left(\frac{4}{\rho}\right), \text{ for each } k \geq 1.$$

This shows that $\beta \overline{x} \notin l_{\infty}(X, M, \overline{\lambda}, \overline{p})$, a contradiction. This completes the proof.

Corollay. 4.2: $l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L)$ forms a linear space over C.

Proof:

Since by definition of $l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L)$, L is finite and therefore by proceeding on the lines of proof of Theorem 4.1 the results follows.

In what follows for $\overline{x} \in l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L)$, we shall denote

$$\psi(\overline{x}) = \{\rho > 0: \sup_{k} M\left(\frac{||\lambda_k x_k||^{P_k/L}}{\rho}\right) \le 1\}.$$

Theorem 4.3: $l_{\alpha}(X,M, \overline{\lambda}, \overline{p}, L)$ forms a total paranormed space with respect to

$$G(\overline{x}) = \inf \{ \rho > 0 : \sup_{k} M\left(\frac{\|\lambda_k x_k\|^{p_k/2}}{\rho}\right) \le 1 \}.$$

Proof:

Obviously, G(0) = 0 and $G(-\overline{x}) = G(\overline{x})$.

Further suppose that $G(\overline{x}) = 0$. Then for every $\varepsilon > 0$,

there exists some ρ_{ϵ} ($0 < \rho_{\epsilon} < \epsilon$), such that $\sup_{k} M\left(\frac{||\lambda_{k} x_{k}||^{p_{k}}}{\rho_{\epsilon}}\right) \le 1$. This shows that

$$\sup_{k} M\left(\frac{||\lambda_{k} x_{k}||^{p_{k} \delta}}{\varepsilon}\right) \leq 1, \text{ for every } \varepsilon > 0.$$

This is possible only when $\|\lambda_k x_k\|^{p_k/2} = 0$ for each

$$k \ge 1$$
. Hence $x = 0$.

Now for $\overline{x}, \overline{y} \in l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L)$, consider $\rho_1 \in \psi(\overline{x})$

and $\rho_2 \in \psi(\overline{y})$. Then clearly by the convexity of M w e have

$$\begin{split} & M \Biggl(\frac{||\lambda_k (x_k + y_k) ||^{p_k/L}}{\rho_1 + \rho_2} \Biggr) \\ & \leq M \Biggl[\frac{||\lambda_k x_k||^{p_k/L}}{\rho_1} \times \frac{\rho_1}{\rho_1 + \rho_2} + \frac{||\lambda_k y_k||^{p_k/L}}{\rho_2} \times \frac{\rho_2}{\rho_1 + \rho_2} \Biggr] \\ & \leq \frac{\rho_1}{\rho_1 + \rho_2} \sup_k M \Biggl(\frac{||\lambda_k x_k||^{\sigma_k/L}}{\rho_1} \Biggr) + \frac{\rho_2}{\rho_1 + \rho_2} - \sup_k M \Biggl(\frac{||\lambda_k y_k||^{\sigma_k/L}}{\rho_2} \Biggr) \\ & \leq \frac{\rho_1}{\rho_1 + \rho_2} \cdot 1 + \frac{\rho_2}{\rho_1 + \rho_2} \cdot 1 = 1. \end{split}$$

This shows that $\rho_1 + \rho_2 \in \psi(\overline{x} + \overline{y})$.

Thus $G(\overline{x} + \overline{y}) \le \rho_1 + \rho_2$ for each $\rho_1 \in \psi(\overline{x})$ and $\rho_2 \in \psi(\overline{y})$ implies that

 $G(\overline{x} + \overline{y}) \leq G(\overline{x}) + G(\overline{y}).$ Finally we show the continuity of scalar multiplication. Let $\overline{x}^{(n)} = (x_k^{(n)})$ be a sequence in $l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L)$ such that $G(\overline{x}^{(n)}) \to 0$ as $n \to \infty$ and (α_n) a sequence of scalars such that $\alpha_n \rightarrow \alpha$. We prove that $G(\alpha, \overline{r}^{(n)}) \rightarrow 0$

$$G\left(\alpha_{n} \overline{x}^{(n)}\right) = \inf\left\{\rho: \sup_{k} M\left(\frac{\|\lambda_{k} \alpha_{n} x_{k}^{(n)}\|^{p_{k}} I}{\rho}\right) \le 1\right\}$$
$$= \inf\left\{\rho: \sup_{k} M\left(\frac{|\alpha_{n}|^{p_{k}} I}{\rho}\right) \le 1\right\}$$
$$\le \inf\left\{\rho: \sup_{k} M\left(\frac{\|\alpha_{n}|^{p_{k}} I}{\rho}\right) \le 1\right\}$$

where $H = \sup_{n \mid \alpha_n \mid}$. Thus for t = max(1, H), then we get

$$G\left(\alpha_{n}\overline{x}^{(n)}\right) \leq \inf\left\{\rho: \sup_{k} M\left(\frac{t \left\|\lambda_{k}x_{k}^{(n)}\right\|^{p_{k}/2}}{\rho}\right) \leq 1\right\}$$

Let $\frac{\rho}{r} = r$, so that

$$G(\alpha_{n} \overline{x}^{(n)}) \leq \inf \left\{ rt : \sup_{k} M\left(\frac{||\lambda_{k} x_{k}^{(n)}||^{p_{k}/L}}{r}\right) \leq 1 \right\}$$
$$= t \times P(\overline{x}^{(n)})$$

implies that $G(\alpha_n \overline{x}^{(n)}) \rightarrow 0$, as $G(\overline{x}^{(n)}) \rightarrow 0$ as $n \rightarrow \infty$.

Let $\alpha_n \to 0$ as $n \to \infty$ and \overline{x} be any element in

 $l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L)$. We show that $G(\alpha_n \overline{x}) \to 0$. Now for $0 < \epsilon < 1$, we can find a positive integer N such that $|\alpha_n| \le \varepsilon$ for all $n \ge N$. Since $inf_k p_k = l > 0$, therefore $|\alpha_n|^{p_k/L} \le |\alpha_n|^{1/L} \le \varepsilon^{1/L}$ for all $n \ge N$. So that

$$M\left(\frac{\left|\left|\alpha_{n}\lambda_{k}x_{k}\right|\right|^{P_{0}/L}}{\rho}\right) \leq M\left(\frac{\left|\alpha_{n}\right|^{P_{0}/L}\left|\left|\lambda_{k}x_{k}\right|\right|^{P_{0}/L}}{\rho}\right)$$

$$\leq M\left(\frac{\varepsilon^{l/L} || \lambda_k x_k ||^{p_k/L}}{\rho}\right)$$

$$\overline{x} \in l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L),$$

For

$$\Psi(\overline{x}) = \{\rho > 0: \sup_{k} M\left(\frac{|\lambda_{k} x_{k}|^{p_{k}L}}{\rho}\right) \le 1\}.$$

So that
$$\psi (\varepsilon^{1/L} \overline{x}) = \{\rho > 0 : \frac{\sup p}{k} M\left(\frac{\varepsilon^{1/L} ||\lambda_k x_k||^{p_k/L}}{\rho}\right) \le 1\}$$

and if $\sup_k M\left(\frac{\varepsilon^{1/L} ||\lambda_k x_k||^{p_k/L}}{\rho}\right) \le 1$, then
 $\sup_k M\left(\frac{||\alpha_n \lambda_k x_k||^{p_k/L}}{\rho}\right) \le 1$.
So, if $\rho \in \psi (\varepsilon^{1/L} \overline{x})$, then $\rho \in \psi (\alpha_n \overline{x})$
i.e., $\psi (\varepsilon^{1/L} \overline{x}) \subseteq \psi (\alpha_n \overline{x})$.

Taking infimum over such pls, we get

$$\begin{split} & \inf\{\rho:\rho\in\psi(\alpha_n\overline{x})\} \le \inf\{\rho:\rho\in A\left(\varepsilon^{1/L}\overline{x}\right)\}\\ &=\varepsilon^{1/L} \quad \inf\{\rho:\rho\in\psi\left(\overline{x}\right)\}\\ &\text{which shows that } G\left(\alpha_n\overline{x}\right) \le \varepsilon^{1/L}G\left(\overline{x}\right) \text{ for all}\\ &n\ge N, \text{ i.e., } G\left(\alpha_n\overline{x}\right) \to 0 \text{ as } n\to\infty. \end{split}$$

Hence $l_{\infty}(X,M, \overline{\lambda}, \overline{p}, L)$ forms a total paranormed space. This completes the poof.

Theorem 4.4: Total paranormed space

 $(l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L), G)$ is complete. Proof:

Let $(\overline{x}^{(l)})$ be a Cauchy sequence in $l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L)$. Let r be a fixed positive real number such that

 $M(r) \ge 1$. Then for each $\frac{\varepsilon}{r} > 0$, there exists an integer $N \ge 1$ such that

$$G(\overline{x}^{(i)} - \overline{x}^{(i)}) \leq \frac{\varepsilon}{r}$$
 for all $i, j \geq N$ (4.1)

Using definition of paranorm, we see that

$$\sup_{k} M\left(\frac{||\lambda_{k} x_{k}^{\emptyset} - \lambda_{k} x_{k}^{\emptyset}||^{p_{k}/L}}{G(\overline{x}^{\emptyset} - \overline{x}^{\emptyset})}\right) \leq 1 \quad \dots (4.2)$$

for all
$$i, j \ge N$$
.
Thus, $M\left(\frac{||\lambda_k(x_k^{(i)} - x_k^{(j)})||^{P_k/L}}{G(\overline{x}^{(i)} - \overline{x}^{(i)})}\right) \le 1 \le M(r)$, for all
 $i, j \ge N$ and $k \ge 1$.
But M is non decreasing, therefore
 $\frac{||\lambda_k(x_k^{(i)} - x_k^{(i)})||^{P_k/L}}{G(\overline{x}^{(i)} - \overline{x}^{(i)})} < r$
Hence by using (4.1),
we have $\|\lambda_k(x_k^{(i)} - x_k^{(j)})\||^{P_k/L} < \varepsilon$(4.3)
This shows that $(x_k^{(i)})$ is a Cauchy sequence in X for all
 $k \ge 1$. But X is complete, therefore there exists x_k
(say) in X for each $k \ge 1$ such that $x_k^{(i)} \to x_k$ as $i \to \infty$.
We show that $\overline{x} = (x_k) \in l_\infty(X, M, \overline{\lambda}, \overline{p}, L)$.
Let us choose $\rho > 0$ such that
 $P(\overline{x}^{(i)} - \overline{x}^{(i)}) < \rho < \varepsilon$ for all $i, j \ge N$(4.4)
Since M is non decreasing, therefore by (4.2) we have
 $\sup_k M\left(\frac{||\lambda_k(x_k^{(i)} - x_k^{(i)})||^{P_k/L}}{\rho}\right) \le \sup_k M\left(\frac{||\lambda_k(x_k^{(i)} - x_k^{(i)})||^{P_k/L}}{G(\overline{x}^{(i)} - \overline{x}^{(i)})}\right)$

 ≤ 1 for all $i, j \geq N$. Since *M* is continuous, taking limit as $j \rightarrow \infty$, we see that

$$\sup_{k} M\left(\frac{\|\lambda_{k}(x_{k}^{(0)}-x_{k})\|^{p_{k}/2}}{\rho}\right) \leq 1 \text{ for all } i \geq N.$$

Taking infimum of such pls, we get

$$G(\overline{x}^{(i)} - \overline{x}) = \inf \{\rho: \sup_{k} M\left(\frac{||\lambda_{k}(x_{k}^{(i)} - x_{k})||^{p_{k}/2}}{\rho}\right) \le 1$$

for all $i \ge N$
 $\le \rho < \varepsilon$.

 $\Rightarrow G(\overline{x}^{(i)} - \overline{x}) < \varepsilon, \text{ for all } i \ge N.$

This shows that $\overline{x}^{(i)} \to \overline{x}$ as $i \to \infty$ and dearly

$$\overline{x}^{(i)} - \overline{x} \in l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L)$$
, for all $i \ge N$.

Also, $\overline{x}^{(\lambda)}$ and $\overline{x}^{(\lambda)} - \overline{x} \in l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L)$, therefore it follows that

 $\overline{x} = \overline{x}^{(N)} - (\overline{x}^{(N)} - \overline{x}) \in l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L) .$ This completes the proof.

Theorem 4.5: The space $l_{\infty}(X,M, \overline{\lambda}, \overline{p}, L)$ is normal.

Proof:

Let
$$\overline{x} = (x_k) \in l_{\infty}(X, \mathcal{M}, \overline{\lambda}, \overline{p}, L)$$
. So that

$$\sup_{k} M\left(\frac{||\lambda_k x_k||^{p_k/L}}{\rho}\right) < \infty \text{ for some } \rho > 0.$$

Let (α_k) be a sequence of scalars such that $|\alpha_k| \le 1$ for all $k \ge 1$. Since *M* is non-decreasing, we have

$$\begin{split} \sup_{k} M\left(\frac{||\lambda_{k} \alpha_{k} x_{k}||^{p_{k}/L}}{\rho}\right) &= \sup_{k} M\left(\frac{|\alpha_{k}|^{p_{k}/L} ||\lambda_{k} x_{k}||^{p_{k}/L}}{\rho}\right) \\ &\leq \sup_{k} M\left(\frac{||\lambda_{k} x_{k}||^{p_{k}/L}}{\rho}\right) < \infty, \end{split}$$

and hence $(\alpha_k x_k) \in l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L)$. So $l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L)$ is normal.

We now introduce a new sub class $\overline{l_{\infty}}$ $(X, M, \overline{\lambda}, \overline{p}, L)$ of $l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L)$ as follows:

$$\begin{split} \overline{I_{\infty}} & (X, \mathcal{M}, \overline{\lambda}, \overline{p}, L) = \{ \overline{x} = (x_k) : x_k \in X, \mathcal{M} \left(\frac{||\lambda_k x_k||^{|\mathcal{P}_k / L}}{\rho} \right) \\ & < \infty \quad \text{for every } \rho > 0 \}. \end{split}$$

 $l_{ap}(X,M, \overline{\lambda}, \overline{p}, L) = \overline{l_{ap}}(X,M, \overline{\lambda}, \overline{p}, L).$

Theorem 4.6 If M satisfies Δ_2 condition then

Proof:

To prove the theorem, it suffices to show that

$$l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L) \subseteq \overline{l_{\infty}}(X, M, \overline{\lambda}, \overline{p}, L).$$

Let $\overline{x} \in l_{\infty}(X, M, \overline{\lambda}, \overline{p}, L)$. Then for some $\rho > 0$,

$$\sup_{k} M\left(\frac{||\lambda_k x_k||^{p_k/L}}{\rho}\right) < \infty.$$

Let us consider an arbitrary $\rho_1 > 0$. Case I: If $\rho \le \rho_1$, then obviously we have

$$\sup_{k} M\left(\frac{||\lambda_{k} x_{k}||^{p_{k}/2}}{\rho_{1}}\right) \leq \sup_{k} M\left(\frac{||\lambda_{k} x_{k}||^{p_{k}/2}}{\rho}\right) < \infty,$$

and hence we get $\overline{x} \in \overline{l_{\infty}}$ (X,M, $\overline{\lambda}$, \overline{p} , L).

Case II: If $\rho > \rho_1$, so that $\frac{\rho}{\rho_1} > 1$ then by using Δ_2 , condition of M, we get

$$\begin{split} \sup_{k} M\left(\frac{||\lambda_{k} x_{k}||^{p_{k}/2}}{\rho_{1}}\right) &= \sup_{k} M\left(\frac{\frac{\rho}{\rho_{1}} ||\lambda_{k} x_{k}|^{p_{k}/2}}{\rho}\right) \\ &\leq K \frac{\rho}{\rho_{1}} \sup_{k} M\left(\frac{||\lambda_{k} x_{k}||^{p_{k}/2}}{\rho}\right) < \infty, \end{split}$$

where K is the number involved in Δ_2 . condition. Hence $\overline{x} \in \overline{I}_{\infty}(X, M, \overline{\lambda}, \overline{p}, L)$.

Acknowledgements

The author wishes to express his deepest sense of gratitude and sincere thanks to his Ph D supervisor Prof. Dr. J.K. Sirivastava, for his valuable suggestion during the course of preparation of this paper.

References

- Basariv, M. and S. Altundag, 2009. On generalized paranormed statistically convergent sequence spaces defined by Orlicz function, *Handawi. Pub. Cor. Journal of Inequality and Applications*
- Ghosh, D. and P.D. Srivastava, 1999. On some vector valued sequence spaces using Orlicz function, *Glasnik Matematicki* Vol. 34 (54): 253–261.
- Khan, V.A. 2008. On a new sequence space defined by Orlicz functions; *Common. Fac. Sci. Univ. Ank-series*, 57, (2): 25–33.
- Karakaya, V., 2005. Some new sequence spaces defined by a sequence of Orlicz functions. *Taiwanese Journal of Mathematics*, 9 (4): 617–627.
- Krasnosel'skiî, M.A. and Y.B. Rutickiî, 1961. Convex functions and Orlicz spaces, P. Noordhoff Ltd-Groningen-The Netherlands.
- Lindesntrausss, J. and Tzafriri, L., 1971. On Orlicz sequence spaces, Israel J. Math; (10): 379-390.
- Parashar, S.D. and B. Choudhary, 1994. Sequence spaces defined by Orlicz functions; *Indian J. Pure Appl. Math.* 25(4), 419–428.
- Rao, K.C., and N. Subramanian, 2004. The Orlicz space of entire sequences. *IJMMS Hindawi Publishing Corp.* 68, 3755–3764.
- Savas E. and F. Patterson, 2005. An Orlicz extension of some new sequence spaces; *Rend. Instit. Mat. Univ. Trieste* 37: 145–154.
- Tripathy, B.C. and B. Sharma, 2005. Some classes of difference paranormed sequence space defined by orlicz functions. *Thai J. of Mathematics*. 3, Number (2): 209–218.
- Wilansky, A., 1978. *Modern methods in Topological vector spaces*; Mc Graw_Hill Book Co.Inc.New York.