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1. INTRODUCTION 
Linear Multiparameter parameter Eigenvalue Problems (    s) considered here is 

  ( )    (   ∑   
        )      (1.1) 

where     ;       ; and         are       over  ;         . The problem (1.1) is extensively addressed in the 
thesis Bora (2019), where the problem is to find the k-tuple   (          )     such that equation (1.1) has a 
solution      for       , then such a   is called eigenvalue and the corresponding tensor product          
        is called the eigenvector (right), where   stands for usual Kronecker product. Similarly, a tensor product 
            is called a left eigenvector if      and      ( )    for       . The history of the origin of the 
problem can be found in the domain of mathematical physics and are addressed in (Volkmer 1988, Cottin 2001). The 
spectral theory and its related classical results can be 
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ABSTRACT

It was mainly due to Atkinson works, who introduced Linear 
Multiparameter Eigenvalue problems (LMEPs), based on 
determinantal operators on the Tensor Product Space. Later, in the area 
of Multiparameter eigenvalue problems has received attention from 
the Mathematicians in the recent years also, who pointed out that there 
exist a variety of mixed eigenvalue problems with several parameters 
in different scientific domains. This article aims to bring into a 
light variety of scientific problems that appear naturally as LMEPs. 
Of course, with all certainty, the list of collection of applications 
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more applications of which we are currently unaware. The paper 
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found in the works Atkinson (1968), Atkinson (1972) and 
Sleeman (1978) and in the papers (Hochstenbach 2003, 
Kosir 1994). Numerical solutions are analysed in Dong et 
al. (2016), Hochstenbach et al. (2002), Hochstenbach et 
al. (2008), Rodriguez (1969) and Xi (1996), and the 
references therein. In the study of the spectrum of     , 
the following commuting k-tuple of operators matrices is 
usually considered by the authors. 

   |
           
           
    
           

|

 

                      (1.2) 

    ||

                      
                      
     
                      

||

 

   (1.3) 

    s can be subdivided into two different categories, 
based on the different positivity conditions of the matrix 
operators   , defined in (1.2).  

Definition 1.1 Kosir (1994): A      is called 
Hermitian, if all the matrices              defined in 
(1.1) are Hermitian, i.e.          

Definition 1.2 Hochstenbach et al. (2003): A      is 
called nonsingular, if the corresponding operator 
determinant    defined in (1.2) is nonsingular.  

Definition 1.3 Hochstenbach et. al. (2002): A Hermitian 
     is called Right definite if  

   (
                         
    
                         

)        (1.4) 

for some     and for all       ,‖  ‖   ,        

Atkinson proved that Right definiteness is equivalent to 
the condition that the determinantal operator   is positive 
definite (Atkinson 1972). Existence of solutions of 
    is assured for the right definite problem. This 
problem has been extensively studied over the years for 
the right definite and nonsingular case. Generally, for 
spectral analysis, the problem is considered as 
nonsingular. A nonsingular system (1.1) can be 
transformed into a system of joint generalised eigenvalue 
problems (GEPs) Atkinson (1972) of the form 

           (1.5) 

For nonsingular      the matrices           , 
       commute. In this case, all eigenvalues of (1.1) 

agree with eigenvalues of (1.5).  

2. SOME APPLICATIONS OF MULTIPARAMETER 
EIGENVALUE PROBLEMS  

The multiparameter spectral theory finds its application 
in diverse scientific and engineering domains, 
particularly in some boundary-value problems, and in the 
problems of applied mathematics and functional analysis. 
The motivation for the numerical study of 
Multiparameter Eigenvalue problems for matrices comes 
from the discretisation of Multiparameter Sturm-
Liouville eigenvalue problems in ordinary differential 
equations (Faierman 1969). Extensive coverage of 
research works on Multiparameter spectral theory of 
differential operators may be found in Atkinson et 
al.(2011), Faierman (1974, 1991), where Faierman 
considered the system of following differential equations  

  

    
  (  )    (  )  (  )  ∑   

          (  )              (2.1) 

where   (  )    ;          are continuous, real valued 
and differentiable on the interval ,     - of real axis. The 
system (2.1) subject to the common boundary conditions  

  (  )         (  )                     

    (  )         (  )                          (2.2) 

is the k-parameter of Sturm-Liouville system. We may 
formulate an eigenvalue problem for (2.1) by writing   
for (          ), where the problem is to choose   in 
such that the equations (2.1) have non-trivial solutions 
satisfying the boundary conditions (2.2). More details on 
the system (2.1) are found in (Atkinson et al., 2011). If   
can be so chosen, then such a   is called an eigenvalue 
and the corresponding product ∏   

     (  ) is called the 
eigenfunction. By discretisation techniques, e.g., the 
finite difference techniques Dai (2007), the 
Multiparameter Sturm-Liouville eigenvalue problems in 
terms of differential operators (2.1) can be converted into 
problems (1.1) in matrix form.     s also arise in the 
theory of approximations, various body diffraction 
theory, and non-linear control problems. For the sake of 
completeness, some of the scientific problems which lead 
    s are listed below:  

2.1 Helmholtz Equation 

Separation of variables applied to the Helmholtz equation 
of the form             (2.3) 

lead to      (Hochstenbach et al., 2019). They are 
concerned with elliptic, sphero-conal, parabolic, 
ellipsoidal, and prolate spheroidal coordinates (Plestanjak 
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et al. 2015). A brief overview of these coordinate systems 
and related boundary value problems that yields      is 
presented below. 

2.1.1 Mathieus System 

Separation of variables applied to the two dimensional 
Helmholtz equation (2.3) in elliptic coordinates  

       ( )   ( )          ( )   ( )                

yields  (   )   ( ) ( ), where G and F satisfy a 
respective coupled system of Mathieu's angular and radial 
equations (Volkmer, 1988) as follows:  

   ( )  (       (  )) ( )   (2.4)   ( )  (  
      (  )) ( )    (2.5) 

where   is the constant of separation,     
  

   , 

   √      with         (  ) (major axis) and 
        (  )the minor axis of the membrane). These 
coupled systems Gheorghiu et al. (2012) of boundary 
value problems come from the problem of a vibrating 
elliptic membrane   with fixed boundaries   ,  

 (     ) (   )    (   )     (   )    (   )     

This problem, along with appropriate boundary 
conditions, is considered one of the most well-known 
examples of two-parameter eigenvalue problems 
Gheorghiu et al. (2012)  and can be solved numerically 
using the Chebyshev collocation.  

2.1.2 Lam  S System 

Separation of variables applied to three dimensional 
Helmholtz equation (2.3) in sphero-conal coordinates.  

       ( )(         ( ))
 
         ( )(        ( ))

 
    

     ( )   ( ) 

where                           and 
        , gives  (   )   ( ) ( ) ( ), where P, 
Q and R satisfy the following system of differential 
equations:  

     ( )      ( )  ,      (   )- ( )             (2.6) 

(        ( ))   ( )       ( )   ( )  ( )  ,   (  
 )    ( )   - ( )    (2.7) 

(         ( ))   ( )        ( )   ( )  ( )  ,    (  
 )    ( )   - ( )    (2.8) 

Where  (   ) and   are constant of separation, a 
system of equations (2.7)-(2.8) represents a trigonometric 
form of Lam  s system of differential equations, which 

forms a two-parameter eigenvalue problem along with 
boundary conditions. Similarly, a system consisting of all 
three equations (2.6)-(2.8) form a three-parameter 
eigenvalue problem together with boundary conditions. 
Numerical solution of these systems is reported in 
Boersma (1991) and (Willatzen 2003).  

2.1.3 Bessel Wave Equations 

Three-dimensional Helmholtz equation (2.3) in parabolic 
rotational coordinates  

        ( )                 ( )               ( 
    ) 

where        ,        lead to the solution  (   )  
 ( ) ( ) ( ), where X, Y and Z satisfy  

   ( )      ( )    (2.9) 

     ( )     ( )  (             ) ( )    (2.10) 

     ( )     ( )  (             ) ( )    (2.11) 

where           are constant of separation. Equation 
(2.9) gives  ( )      , where      . The parameter 
p will be an integer if the conditions  ( )   (  ), 
  ( )    (  ) is imposed on (2.9). Two Bassel's 
equations (2.10) and (2.11) under the suitable boundary 
conditions gives a two-parameter eigenvalue problem 
(Willatzen et al. 2011).  

2.1.4 Ellipsoidal Wave Equations 

The three-dimensional Helmholtz equation (2.3) is 
separable in ellipsoidal coordinates (     )which is 
found in Section 29.18(ii) of (Olver 2010): 

      (   )  (   )  (   ) 

        (   )  (   )  (   ) 

    
     (   )  (   )  (   ) 

which is a natural choice of the region    
{(     ) (    )

  (    )
  (    )

   } Hochstenbach et al. 

(2009), where sn, dn, cn denotes jacobian of elliptic 
functions defined with respect to theta functions as 
follows 

  (   )   (   )    (   )
   (   )    (   )

 

  (   )     (   )    (   )   (   )    (   )
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  (   )     (   )  (   )
 (   )    (   )

 

Theta fuinctions are given by the formula θ(x, 
 ))=∑     

     such that      (    ) and    
   (     ). The Theta functions with elliptic modulus k 

is given by  .    (   ) (   ) /
 
 and      (   )   . The 

Jacobi functions are defined in terms of elliptic modulus 
k(T), so we need to invert to find T in terms of k. 
Similarly other functions can be defined.  

The solution can be written as  

 ( (     )  (     )  (     ))    ( )  ( )  ( )  (2.12) 

where           satisfy ellipsoidal wave equations, and 
it can be expressed in Jacobian form as follows  

    ( )  ,   (   )     (   )  
       (   )-  ( )                                 (2.13) 

    ( )  ,   (   )     (   )  
       (   )-  ( )                                (2.14) 

    ( )  ,   (   )     (   )  
       (   )-  ( )                              (2.15) 

Where h,  , and k are real parameters. The system (2.13)-
(2.15) together with suitable boundary conditions admits 
a three-parameter eigenvalue problem, where each of the 
equations contains all three parameters. Using 
Multiparameter approach with spectral collocation 
techniques, computation of eigenvalue presented by 
Plestanjak et al. (2015) is quite efficient than other 
techniques presented in Willatzen et al. (2005) and 
Levinita (1999).  

2.1.5  System Of Spheroidal Wave Functions 

The equation (2.3) in prolate spheroidal coordinates 
(     )is found in Section 30.13(iv) of (Olver, 2010)that 
admits the solution  (     )    ( )  ( )  ( ), 
where          satisfy  

(    )    ( )       ( )  .     (    )  
  
    /   ( )    (2.16) 

(    )    ( )       ( )  .     (    )  
  
    /   ( )    (2.17) 

     ( )      ( )     (2.18) 

Here          , a three-parameter eigenvalue 
problem where one equation contains just one parameter 

and the other two of the equations contain all three 
parameters. If periodicity conditions   ( )  
  (  )    ( )     (  ) are imposed on (2.18), then 
parameter   will become an integer. For a fixed   of 
order      to      , the system (2.16)-(2.17) together 
with boundary conditions, is solved as a two-parameter 
eigenvalue problem numerically in (Amodio et al. 2014). 
When separation of variable technique is applied to the 
equation (2.3) in oblate spheroidal coordinates, then a 
similar system of spheroidal wave functions is also found 
in Section 30.14(iv) of (Olver 2010). 

2.2 SYSTEM OF POLYNOMIAL BUNDLES 

The system polynomial bundles of the form        
      , reported in Roach et al. (1977) and Roach 
(1979) can be replaced by an equivalent system of two-
parameter eigenvalue problems, where the matrix 
operators A, B, C are Hermitian and    . The study of 
polynomial bundles under the framework of 
Multiparameter spectral theory is much more reliable and 
efficient than the theory developed by (Gohberg et al. 
1969).  

2.3  Dielectrometry Sensors 

When calculating the electrical properties of a material 
from measurements or inter-digital dielectrometry 
sensors Browne (2008), the material's properties with two 
layers are the eigenvalues, obtained from the 
corresponding two-parameter matrix eigenvalue problem.  

2.4  Power Flow Equations 

    s play a vital role in electrical engineering to find 
solution techniques of Power flow equations reported in 
(Molzahn 2010). Let   ,   ,    and    represent net real 
power injection, the net reactive power injection, the 
voltage magnitude and the voltage angle associated with 
each bus k of the power system. Each bus k in the power 
system can be categorised into three class: load (PQ) bus, 
slack bus and voltage controlled (PV) bus. Usually, a 
single bus is chosen as the slack bus, which has a fixed 
value of    and   . Again,    and    are calculated to 
form the power flow equations. The remaining buses are 
specified as either PQ or PV buses. For PQ bus    and    
and for PV bus    and    are calculated using power 
flow equation. In the derivation of the power flow 
equations, each bus's voltages are usually decomposed 
into orthogonal d and q components.  

         (  ) (2.19) 



Mathematics/Review

79NJST | Vol 19 | No. 2 | July-Dec 2020

Applications of Multiparameter Eigen value ProblemsNepal Journal of Science and Technology (NJST)

 
 

         (  ) (2.20) 

Using the equation for complex power          
     , power flow equations are developed. For an n bus 
power system, the equations for the bus i becomes,  

               ∑   
   (        )(        ) (2.21) 

Equating real and imaginary parts of (2.21) and including 
the voltage magnitude relationship gives the complete set 
of power flow equations as follow: 

      ∑   
   (             )     ∑   

   (             ) (2.22) 

      ∑   
   (              )     ∑   

   (       
      ) (2.23) 

              (2.24) 

These equations can be reformulated as     , and this 
reformulation shows an application of Multiparameter 
spectral theory in the power system.  (   ) parametric 
eigenvalue problems arise in n bus systems, where both q 
and d orthogonal components of bus voltages can be 
composed of corresponding eigenvalue and eigenvectors 
from the formulation of     s. Again, there are 
possible applications to study additional insights into 
solutions of the matrix formulation of the power flow 
equations. With the help of standard eigensolvers, the 
determination of several solutions to      is useful for 
finding the stopping criteria for the continuation of power 
flow. Moreover, conditions of existence and uniqueness 
of solutions The multiparameter system is useful for 
evaluating the point of voltage collapse and analysing 
power system models in heavily loaded situations.  

2.5  Elastomechanical Systems 

In linear elastomechanical systems, the analytical models 
are generally updated by model parameter estimation 
either with input-output measurements or modal test 
results. This modal structure is a spatially discretised 
model, for example, a finite element model or a model of 
multibody systems consisting of a sum of matrices is 
multiplied by a dimensionless adjustment parameter. 
Cottin (2001) showed that updating linear analytical 
models can be converted to an     s that require only a 
minimum set of test data to find the value of actual model 
parameters with a negligibly low risk of biased estimates.  

The governing equations of time-invariant spatially 
discretised elastomechanical n-d of the model are given 
by    (  )   ( )    (  )  ( )    (  ) ( )    ( )             (2.25)  

Where,   ,    and    are respectively symmetric and 

positive definite stiffness matrix, damping matrix and 
inertia matrix of order n, with S being     input matrix 
with such that    . p(t) and u(t) are respective input 
and response vector. The measurement equation  

 ( )    ( )(                 )  (2.26) 

where H is the output matrix of order     such that 
   . By decomposing the model matrices   ;        
to a sum of matrices    ;         (2.25) can be 
parametrised as  

  (  )  ∑    
          (2.27) 

where the     is the dimensionless adjustment parameter 
with       for the a priori model. If the stiffness matrix 
is parametrised according to (2.25), provided the inertia 
and damping matrix are known, we obtain the following 
     the undamped model. 

(  ̂    ∑   
         )             (2.28) 

where  ̂     ̂  with natural frequencies of the system 
  , where ( ̂ ) denotes quantities gained by experiments.  

2.6  Young-Frankel Scheme 

In Young-Frankel scheme reported in Browne (2008), for 
the class separable partial differential equations of elliptic 
type in two independent variables, the eigenvalue of 
maximum modulus of certain two-parameter eigenvalue 
problem gives the optimum value of the over-relaxation 
parameter. 

2.7  Aeroelastic Flutter Problems 

Solution methods of Multiparameter eigenvalue problems 
can be used for the stability analysis of aeroelastic 
structures of flutter problems (Pons 2015). Let us 
consider a linear system with eigenvectors x, which 
depends arbitrarily with eigenvalue   and another 
structural parameter     such that  (   )     (2.29) 

where       .Taking complex conjugate of (2.29) and 
adding another equation  ̅(   ) ̅     (2.30) 

to the system, we get a Multiparameter eigenvalue 
problem. Consider a section model without damping, 
then governing equations of the model are 

  ̈     ̇          ̈    ( )
   ̈     ̇          ̈   ( ) (2.31) 

where m and    denote section mass and polar moment of 
inertia;    and    denote section bending and twist 
stiffness; L(t) and M(t) denotes aerodynamic lift and 
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moment and   denotes section static imbalance. Taking 
Fourier to transform , ( )  ( )-  , ̂  ̂-    of this 
section model we have  

(            ) ̂       ̂   (   ̂  ̂)
      ̂  (             ) ̂   (   ̂  ̂)

(2.32) 

To model the aerodynamic loads in the frequency 
domain,  

     (   ̂     ̂)
     (   ̂    ̂)

(2.33) 

The aerodynamic coefficients *    θ     θ+are a 
complex function of k. The final flutter problem takes the 

form (.        
 
    

 
  / 

        )    (2.34) 

with dimensionless parameter defined in Table 1.  

   
 
 (
  
 (    

 ))    
 
 (
     (   )
  (    )   (    ))

   
 
 .
  
     /   (

    
     )

   (
       
         

)    (
  
  

     
)

(2.35) 

In  - form it becomes  

((     )                   )   (2.36) 

In    form it becomes  

((     )                   )   (2.37) 

Table 1: Value of dimensionless parameter 
Parameters Values 

Mass ratio -     
The radius of gyration -         
Bending damping -           
Torsional damping -          
Bending nat. frequency -           rad/s  
Torsional nat. frequency -          rad/s 
Static imbalance -       
Pivot point location -      

For undamped system     
((     )              )   (2.38) 

where     . 

((     )              )   
(( ̅   ̅ )   ̅    ̅     ̅  ) ̅   

(2.39) 

which are all quadratic polynomial eigenvalue problem. 
Using linearization techniques, this problem can be 
converted to a linear two-parameter eigenvalue problem.  

2.8  Charge Singularity Problems 

The governing equations of Charge singularity problem 
which are found in Morrison and Lewis (1976) and 
Bailey (1981) at the corner of a flat plate in the self-
adjoint form are given by  

((         )
 
   )  (            )(         ) 

 
  

        (   )
((          )

 
   )  (        

      )(  
        ) 

 
          (   ) (2.40) 

subject to the boundary conditions  
 ( )    ( )   (2.41) 
  ( )    ( )              (2.42) 
 ( )   ( )             (2.43) 

where       (  |   |) and        (  |   |) and x 
is the angle of the sector. Using central difference 
techniques and by adopting Marcuk’s identity Babuska 
et. al.(1966) with the grid    

 and transforming 
boundary conditions equation (2.40) can be discretised to  

(              ) ̃     (              ) ̃   (2.44) 

where       are    matrices over   for       , 
 ̃  ( ̃   ̃     ̃ ) with  ̃   (  ),       . If 
              (   ) (   )       ,  ̃  
( ̃   ̃     ̃ ) with 

 ̃   (  )      . Similarly, if               
 (   ) (   )         

 ̃  ( ̃   ̃     ̃ ) with  ̃   (  )      (   ). 
Equation (2.44) is a two parameter eigenvalue problem.  

2.9  Bivariate Matrix Polynomials 

Two-parameter bivariate matrix polynomials of degree n 
presented in the papers Plestanjak (2017) and Plestanjak 
et al. (2016) and are given by the equations (2.45) and 
(2.46)  

  (     )  ∑    ∑           
        (2.45) 

  (     )  ∑   
   ∑     

        
                   (2.46) 

where        are    matrices can be linearised ([24], 
Section 6) as an equivalent singular two-parameter 
eigenvalue problem with matrices of size     (   )  
 
  (   ) . 

This equivalent two-parameter eigenvalue problem helps 
the numeric of finding zeros of a system of bivariate 
matrix polynomials. 
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3.  CONCLUSION 
Multiparameter eigenvalue problems originated from 
applying the method of separation of variables techniques 
to solve partial differential equations of disparate 
scientific domains, especially in physics and engineering. 
Therefore, it has been concentrated on applications to 
boundary-value or eigenvalue problems for ordinary 
differential equations, particularly, the Multiparameter 
Sturm-Liouville Problem. However, there is still more 
scope for the further study of Multiparameter problems. 
As far as an abstract theory is concerned, Atkinson has 
introduced the finite-dimensional case of matrices. 
However, it would be of considerable interest to study the 
Multiparameter problems for difference operators also. 
This has enormous application in mathematical 
physics.The presented list of applications of the 
Multiparameter problems is not a complete one. There 
still exist possible applications of Multiparameter spectral 
theory both in theoretical and applied disciplines, and it 
will conduit new avenues for future research in this topic. 
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