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Introduction
Groundwater is indispensable for sustaining 
human life, economic growth, and a healthy 
ecosystem (Gleeson et al., 2012). Since 
groundwater is an essential source of water 
in semi-arid and drought-prone regions, it is 
imperative to understand groundwater quantity 
and quality along with flow conditioning these 
regions for sustainable aquifer management 
(Guihéneuf et al., 2014). Groundwater models 
can be used to develop such understandings and 
help in an informed decision-making process. 
These models represent the essential features 
of the actual groundwater systems employing 
a mathematical counterpart (Alley, 1999) and 

generate precise information for water resources 
management, groundwater protection, and 
remediation (Baalousha, 2008). The necessities 
of building the models comprehensively increase 
in the regions, which are complemented by undue 
exploitation of groundwater in order to fulfill 
the daily water demand. These models could be 
steady-state or transient, confined or unconfined 
or combined, one-dimensional, two-dimensional, 
quasi three-dimensional, or three-dimensional, 
which can be solved by using finite difference 
methods or finite element methods or combination 
of both (Todd & Mays, 2005).

Groundwater Modeling System (GMS), 
Finite Element Subsurface Flow System 
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Abstract
Recurring droughts and increased exploitation of groundwater to meet the growing water needs 
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(FEFLOW), Modular Finite-difference Flow 
Model (MODFLOW), etc. are some of the 
advantageous software that has been developed 
to build groundwater models applicable for 
groundwater resource management. Such 
software can be applied to assess the waterlogged 
area (Singh 2013), simulate drawdown (Sklorz et 
al., 2017), and determine the interactions between 
the surface water and groundwater (Lasya & 
Inayathulla 2015). 

MODFLOW, developed initially by 
McDonald & Harbaugh (1988), is now added with 
many capabilities to make it user friendly. Most 
of the hydraulically defined groundwater flows 
simulated by MODFLOW were independently 
verified as rationally isotope mixing model (Carrol 
et al., 2008). Visual MODFLOW, an integrated 
package combining MODFLOW, MODPATH, 
and Zone Budget, is the most complete and 
comprehensible modeling setting that can be 
applied conveniently in three-dimensional 
groundwater flow and contaminant transport 

simulations (Waterloo Hydrogeologic 2015). 
Fouépé Takounjou et al., (2009); Jovanovic 
(2009); Mondal and Singh (2009); Shi (2010); 
Mondal and Singh (2012); Saghravani et al., 
(2012); Steiakakis et al., (2016); Baharuddin et al., 
(2016); Kumar et al., (2017) and Sen et al., (2018) 
applied Visual MODFLOW for various research 
purposes. Based on the review study of research 
papers, Hariharan and Uma Shankar (2017) and 
Mondal (2019) found that Visual MODFLOW 
can be applied in a variety of groundwater flow 

simulation settings. Considering the full range of 
applicability and reliability of Visual MODFLOW, 
this study is aimed to develop a preliminary steady-
state groundwater flow model for an experimental 
site using Visual MODFLOW Classic Interface 
(Build: 4.6.0.168). This model would be helpful 
to evolve the future pumping schemes in the study 
site located at Choutuppal Village, Nalgonda 
district, Telangana, India (Fig. 1).

Study area
The Experimental Hydrogeological Park 
(EHP) (Latitudes: 17°17′23.5″-17°17′52.5″N; 

Fig. 1. Showing the EHP site with the observation wells, Choutuppal Mandal, Nalgonda District, Telangana, 
India (Image Source: Google Earth, retrieved on 20 January 2019)
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Longitudes: 78°54′59.2″-78°55′27.6″E) is situated 
in the Nalgonda district close to Choutuppal 
village in Telangana state, 60 km south-east of 
Hyderabad city (Fig. 1). Constituted of weathered 
and fractured Archean granite, the EHP site covers 
an area of 0.43 km2 with an altitude range of 363 
to 375 m (Fig.2). The EHP site has more than 28 
boreholes (available 20 boreholes data were used 
for this study) that are being used for studying 
aquifer properties. 

Geological structure
The typical geological profiles of two boreholes 
(shown in Fig. 3) are obtained at the EHP by drill 
cuttings analysis. The lithological description 
is given by Guiheneuf et al., (2014), which are 
from top to bottom up to the explored depth of 
around 80 m, below ground level (bgl). It has been 
observed that the top red sandy soil ranges from 
the first decimeters to the first meter. The sandy 
regolith is varied from about 1–3 m deep, and the 
saprolite (mainly laminate structure) is from about 
3 to 13–24 m deep. It is derived from the in-situ 

weathering of granitic rocks. In the deeper part, 
poorly fractured crystalline rock overlies upon the 
fresh basement (Boisson et al., 2015; Guihéneuf 

et al., 2017). The upper part of the granite is 
highly weathered and fractured, but the fracture 
frequency decreases rapidly with the depth.

Climatic condition
Nalgonda district has a semi-arid climate with 
an average annual temperature of 28°C and a 
maximum of 45°C in the summer season. The 
mean annual rainfall is around 751 mm, which 
ranges from 2 mm in February to 171 mm in July. 
The dug well depth ranges from 30 to 300 m below 
the ground surface (m bgs) in the district (CGWB, 
2013). Water levels at the district are highly 
variable depending on the monsoon and usually 
range between 2 and 26 m (m bgs). Water level 
measurement at the EHP site during the last four 
years has shown that only monsoon precipitation 
has recharged the aquifer.

Methods
The Visual MODFLOW Classic Interface was 
used, which can simulate the groundwater flow 
model under the steady and transient states 

either 1-D, 2-D, or 3-D for both anisotropic 
and heterogeneous systems by adopting the 

Fig. 2. Topography contour map (in m, amsl) of the EHP in ChoutuppalMandal, Nalgonda District, Telangana, 
India
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finite-difference method. The governing 3-D 
groundwater flow equation used by MODFLOW 
(McDonald & Harbaugh 1988) is as below.

… … … … … … … … … … … … … … ( 1 ) 
Where, Kx, Ky and Kz are the values of hydraulic 
conductivity along the x, y, and z coordinate axes 
oriented parallel to the principal axes of hydraulic 
conductivity [L/T], h is the hydraulic head [L], qs 
is the volumetric flux of groundwater sources and 
sinks per unit volume [1/T] with positive values 
indicating flow into the groundwater system, Ss is 
specific storage [1/L], and t [T] is time.

The modeling process involves necessary 
steps that include objective identification, data 
collection, and review, model conceptualization, 
model design, model run, model calibration along 
with improvements in the conceptual model, 

verification of the model, analysis of sensitivity 
and uncertainty, and finally reporting the outcome. 
The methodology generally adopted to set up 
a groundwater model is described in the flow 
chart mentioned in Fig.4. For this study, the same 
steps were followed to develop a steady-state 
groundwater flow model.

Data collection
Elevation data of the EHP site were collected from 
Google Earth Map using a TCX converter with an 
accuracy of ±5.0 m. To maintain the accuracy, 
20 elevation data collected at the observation 
wells were compared with the field level Global 
Positioning System (GPS) data that showed on 
an average variation of +2.0 m. The altitude data 
deduced from the Google Earth Map have been 
corrected accordingly by reducing 2.0 m and used 
for this study.

Published literature was reviewed to collect 
hydro-geological and lithological information of 
the EHP site (Boisson et al., 2015; Guihéneuf et 

Fig.3. Showing the typical lithology (at CH1 and CH2) of the EHP Site ( Image Source: Google Earth, 
retrieved on 20 January 2019)
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al., 2014; and Guihéneuf et al., 2017).

Conceptualization and grid design 
The conceptualization of the flow regime was 
conducted based on hydro-geological information 
collected from the literature review and existing 
physical conditions of the site.The model was 
divided into grids of 5m×5m (Fig.5) in each layer 
represented with 17,200 active cells. The area 
spreading about 0.43 km2 was conceptualized as 
a two-layered model consisting of a weathered 
layer overlying a fractured aquifer, as mentioned 
in Fig.6. 

The top layer was considered as an unconfined 
aquifer, whereas the bottom layer was assumed 
to be confined aquifer. The top layer, weathered 
zone, lies in between 2 -24 m, bgs underlying by 
15 - 80 m fractured/semi-weathered layer. The top 
of the first layer (namely shallow aquifer) varied 
from 333 to 362 m (amsl), while the bottom of 
the second aquifer ranged from 261.0 to 285.7 m 
(amsl). These two layers have different hydraulic 

characteristics, and especially the fractured 
zone/semi-weathered layer has a lower storage 
coefficient comparatively the weathered zone. This 
weathered aquifer was considered as equivalent to 
a porous one. For the saturated zone connectivity 
in fractured media/semi-weathered layer, although 
a general decrease of the hydraulic conductivity 
with depth is known, only minimal information 
is available on the vertical connectivity of the 
dominant horizontal fracture network. This 
connectivity has been investigated through packer 
tests at a localized scale (Boisson et al., 2015) and 
indicated the semi-weathered layer with a large 
fracture density having low storativity. Thus the 
semi-weathered/fractured layer was also assumed 
to be a porous layer for the groundwater flow 
modelling.

Assignment of boundary conditions
The study site slightly slopes towards the North. 
Streams or rivers are absent. So, the constant 
head boundary was taken for the steady-state 
simulation towards the North direction of the 

Fig.4. Methodological flow chart to develop a groundwater flow model
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micro-watershed. A constant head of 335 m (amsl) 
was taken in the model simulation.The no-flow 
boundaries were assigned in the other three sites 
of the watershed, where the water divides were 
observed and the watershed has only one outlet in 
the northern part.

Assignment of aquifer properties
Hydraulic conductivity and recharge values, along 
with the porosity, specific yield, specific retention, 
and specific storage, were assigned to each layer. 
The hydraulic conductivity of the first layer varies 
between 0.0864 and 8.64 m/d (Guihéneuf et al., 
2014). For this study, layer one was divided into 
three zones based on the variations of geological 
conditions, and hydraulic conductivity values were 
assigned as 5, 4, and 3 m/d, respectively, for Zones 
1, 2, and 3 (Fig. 7). The hydraulic conductivity 
value of the second layer was calculated by 

interpolating the observed conductivity values at 
the observation wells using the Krigging method 
in the MODFLOW environment. The interpolated 
conductivity value for layer 2 ranges from 0.04 
to 0.864 m/d. A maximum conductivity value of 
0.864 m/d lies in the North-Eastern part, and the 
minimum value of 0.04 lies in the Southern part.

The mean annual rainfall in the study area inthe 
year 2013 was about 1101 mm. Recharge is 
assumed to be 2-15% (Lerner et al., 1990) of the 
annual rainfall in the semi-arid area, which was 
utilized for the natural groundwater reserve in 
the model. Therefore, the recharge values varied 
from 22.02 to 165.15 mm/yr. The recharge values 
assigned were 70, 80, and 90 mm/yr, respectively, 
for Zones 1, 2, and 3 (Fig. 8). Irrigation recharge 
was not considered due to the unavailability of 
data, which was not practiced in the modeled area.
The assigned values of the other layer properties 

Fig.5. Grids of 5m×5m in the modeled area
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Fig.6. Cross-section view of the two-layered conceptual model of the EHP site at the Row: 91

  
 Fig.7.Showing the K- distribution in the first layer
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were as given in Table 1.

Table 1. Other aquifer properties assigned to 
layers 1 and 2

Properties Layer-1 Layer-2 
Porosity (%) 25 5 
Specific Yield (%) 12.5 2 
Specific Storage 
(1/m) 

1.032x10-4 9.91x10-5

Steady-state model
The purpose of the steady-state groundwater 
model is to demonstrate that the model can 
reproduce field measured heads and flows. The 
flow model was calibrated by adjusting numerous 
parameters such as recharge, conductivity, and 
porosity, etc. within an acceptable limit until the 
best fit was obtained between the observed and 
calibrated heads. The accuracy of the computed 
heads was judged by the root mean square error 
among the computed and observed head plots on 

the graph. 

The groundwater steady-state flow model was 
developed for 365 days using available 20 
observation wells data. The model was calibrated 
against the constant head boundary, recharge, 
and hydraulic conductivity through a sequence of 
sensitivity analysis runs. The values were adjusted 
during trial and error runs aiming at the smallest 
root mean square errors at the targets.Groundwater 
levels measured were used as initial water level 
conditions.

Sensitivity Analysis
Sensitivity analysis was performed in order to 
notice the effect of uncertainties on the calibrated 
model. It involved a series of simulations on the 
outcome model by changing the values of assigned 
aquifer parameters and boundary conditions. 
During the analysis, one parameter was changed 
with in a conceivable range by increasing and 
decreasing the value of the parameter multipliers. 

Fig. 8. Showing assigned recharge values (in mm/year) for the EHP site
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Mass Balance
The results from steady-state or transient 
MODFLOW simulations can also be used to 
calculate sub-regional water budgets. The U.S. 
Geological Survey has developed a zone budget 
tool to calculate water budgets for user-defined 
zones in the model. This study applied the zone 
Budget tool to quantify the water balance and 
contributions of assigned parameters to the aquifer 
system. 

Results and Discussion
The calibrated groundwater heads were in good 
agreement with the observed heads. The observed 
heads ranged from 348.42 to 356.18 m, amsl, 
and the calibrated heads ranged from 348.47 m 
to 356.83 m. The groundwater velocity vectors 
indicated the predominant flow towards the North 
with a velocity of 0.02 m/d in layer 2. In Fig.9, the 
observed and calculated head values of well CH11 
are closely simulated with an overestimation of 
+0.05 m, and the maximum over estimation of 0.77 
m is at the well CH06 of the model. MODFLOW 
application may produce several reasonable as 
well as some unsatisfying simulations because 
of the complex hydrogeologic systems (Khadri 
& Pande 2016). One of the common ways to 
determine the accuracy of the results of calibration 
is calculating the root mean square error (RMS) 

value. The calibration result of the study has a 
low RMS value of 0.22 m (Fig. 9), demonstrating 
its satisfying responses to field measured heads.
The results of the sensitivity analysis showed 
that the models are sensitive or reacting much to 
the parameters like hydraulic conductivity and 
recharge from rainfall in the different hydro-
geological zones (Fig. 10). The micro-model is 
sensitive to the recharge in zone 3, resulting in a 
high RMS value than the other zones. The model 
is also comparatively more sensitive to hydraulic 
conductivity in Zone 1. The maximum RMS value 
obtained was 2.038 during the sensitivity analysis. 

An outflow of 106.38 m3/day was taken up 
by the Constant Head Boundary (CHB), and 
1.81m3/day of groundwater was being used up 
by evapotranspiration. The inflow of the system 
was about 92.72 m3/day. There was an overdraft 
taken only by the CHB because of there was no 
predominant abstraction well for the pumping. 

The optimum pumping schemes simulated till the 
year 2022, assuming the population of 1200 based 
on the current growth rate of 1.36% at nearby 
villages, showed that the maximum pumping rate 
should not go beyond 24 m3/day within this micro-
watershed taken one representative bore well 
(at the CH 4, Fig.11). Since the drinking water 
demand (10-15 m3/day) nearby the study site 

Fig.9. Calculated vs. observed heads in the steady-state calibration
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is below this limit, it can be considered that the 
aquifer will sustain and provide enough drinking 
water to nearby the villages.

Conclusion
A groundwater model has been conceptualized 
and developed using the lithology information 
and aquifer parameters for the Experimental 

Hydrogeological  Park (EHP) at Choutuppal 
Mandal, Nalgonda district, Telangana, India. 
The computed groundwater heads have shown 
to replicate the trend of observed groundwater 

heads. Groundwater is flowing from the South to 
the North direction, with the velocity ranges of 
0.01 to 1.95 m/d. The output from the calibrated 
model can be used to develop the transient state, 

Fig. 10. Sensitive analysis of the flow model due to the hydraulic conductivity and recharge

Fig.11. Showing a representative bore well (CH4) at the EHP site, Chouttupal, Nalgonda district to be used for 
the drinking water supply by nearby villagers 
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particle tracking, and mass transportation models 
that will help in understanding the groundwater 
regime in the EHP. Further, the updated data 
can be used to refine the model and compare the 
findings with the model developed in this study to 
observe the accuracy of the assigned parameters. 
The current study has found that the maximum 
pumping rate should not go beyond 24 m3/day for 
the drinking water supply to neighboring villages.
The updated model may be applied to project the 
future scenarios of the aquifer system and estimate 
the sustainable pumping scheme at the EHP.
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