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Abstract 
In this paper, the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters of the 
Gompertz extension distribution based on a complete sample. We have developed a procedure to obtain 
Bayes estimates of the parameters of the Gompertz extension distribution using Markov Chain Monte 
Carlo (MCMC) simulation method in OpenBUGS, established software for Bayesian analysis using 
Markov Chain Monte Carlo (MCMC) methods. We have obtained the Bayes estimates of the parameters, 
hazard and reliability functions, and their probability intervals are also presented. We have applied the 
predictive check method to discuss the issue of model compatibility.  A real data set is considered for 
illustration under uniform and gamma priors

Keywords 
Bayesian estimation, Maximum likelihood estimation, markov chain monte carlo, model validation, 
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Introduction 
The cumulative distribution function (CDF) of the 
Gompertz distribution (GZ), Gompertz (1825) is 
given by  

The 

corresponding hazard rate function is given by 
. 

Adding one or more parameters to distribution 
makes it more productive and more flexible for 
modelling data. There are different ways for 
adding parameter(s) to a distribution. Such 
addition of parameters makes the resulting 
distribution richer and more flexible for modelling 
data. Marshall and Olkin (1997, 2007), added one 
positive parameter to a given (general) survival 
function.  
 The Gompertz distribution with power 
parameter (GP), Marshall and Olkin (2007) has 
cdf 

 

hazard rate 
 

and density 

With the frailty parameter , this distribution 
is discussed by Dhillon (1981), Leemis (1986) and 
Kunitz (1989). With  the distribution is 
proposed by Chen (2000) the general case has 
been called a “modified Weibull extension” and is 
studied by Xie et al., (2002), as well as by Murthy, 
et al., (2004). The various authors note that the 
hazard rate of this distribution is bathtub shaped 
when α <1. When α ≥ 1, the hazard rate is 
increasing. The hazard rate is convex for all α >0. 
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The Gompertz distribution has a limiting 
exponential distribution. Similarly, the Gompertz 
distribution with power parameter has a limiting 
Weibull distribution. Because of this convergence, 
the Gompertz distribution with power parameter is 
called a “Weibull extension” by Murthy et al., 
(2004). 
Another modified version of Gompertz distribution 
named as the Gompertz distribution with hazard 
power parameter has been presented in Marshall and 
Olkin (2007).  We prefer to call the Gompertz 
distribution with hazard power parameter as the 
"Gompertz Extension" distribution. Note that the 
Gompertz distribution is a particular member of the 
"Gompertz Extension" distribution. We do not find 
any systematic study classical as well as Bayesian 
on Gompertz Extension (GZE) distribution in the 
literature.     
 
2. Gompertz Extension (GZE) 
Distribution: model analysis 

Cumulative distribution function (CDF):  

The distribution function of Gompertz extension 
distribution with three parameters is given by 

 

(2.1) 
where ,  and  are the parameters. The 
Gompertz extension distribution will be denoted 
by  
 
Probability density function (PDF): 
The probability density function is given by 

(2.2) 
Some of the typical GZE density functions for 
different values of and  are 
depicted in Figure 2.1. It is clear from Figure 2.1 
that the density function of the GZE distribution 
can take different shapes. 

The reliability/survival function (SF): 
The reliability/survival function is 

(2.3) 

 

 
Fig 2.1    The PDF of the GZE for ,  and 

different values of . 
 
The hazard rate function (HRF): 
The hazard rate function is 

(2.4) 

Fig 2.2: The HRF of GZE distribution for , 
 and different values of . 

 
It is increasing when and when  the 
hazard rate has a minimum at 
Figure 2.2 exhibits the different hazard rate 
functions for GZE distribution. 
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The cumulative hazard function (CHF) and 
failure rate average (FRA):  
 
The cumulative hazard function  defined as 

  (2.5) 
Another relevant function useful in reliability 
analysis is failure rate average (FRA). The 
failure rate average of X is given by 

(2.6) 

where  is the cumulative hazard function. 
An analysis for FRA(x) on x permits to obtain 
the IFRA and DFRA classes.  

 

The quantile function (QF): 

The quantile function is given by 

    (2.7) 
The Random Deviate Generation: 
The random deviate can be generated from 

 by 
 

 

(2.8) 

where u has the U (0, 1) distribution. For model 
choice based on information criterion, the values 
of AIC and BIC can be used.

3.  Maximum likelihood estimation (MLE) and information matrix 
In this section, we briefly discuss the maximum likelihood estimators (MLE’s) of the Gompertz extension 
distribution and discuss their asymptotic properties to obtain approximate confidence intervals based on 
MLE’s. 
 Let be a random sample of size n from , and then the log-likelihood 
function  can be written as;  

(3.1) 

Therefore, to obtain the MLE's of ,  and , we can maximize (3.1) directly with respect to ,  and 
or we can solve the following two non-linear equations using the Newton-Raphson method :  

  

 

  

and 

. 

 
Let us denote the parameter vector by  and the corresponding MLE of as  then 

the asymptotic normality results in  

 (3.2) 

where I(d) is the Fisher’s information matrix given by 
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(3.3) 

In practice, it is useless that the MLE has asymptotic variance because we do not know d.  Hence, 
we approximate the asymptotic variance by “plugging in” the estimated value of the parameters.  The 
standard procedure is to use observed Fisher information matrix  (as an estimate of the information 
matrix I(d)) given by 

(3.4) 

where H is the Hessian matrix,   and . The Newton-Raphson algorithm to 

maximize the likelihood produces the observed information matrix. Therefore, the variance-covariance 
matrix is given by 

(3.5) 

Hence, from the asymptotic normality of MLEs, approximate  confidence intervals for ,  
and  can be constructed as 

  and  (3.6) 

 where is the upper percentile of standard normal variate. 

 
4. Bayesian Model Formulation 
The Bayesian model is constructed by specifying the prior distributions for the model parameters ,  
and , and then multiplying with the likelihood function to obtain the posterior distribution function. 

• Probability Model:   
• Prior distribution:  
• Data:  

Given a set of data , the likelihood function is 
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Denote the prior distributions of ,  and as. The joint posterior is  
 

 
Prior Distributions: 
We assume the independent uniform for   and gamma priors for  and 

 as 

 

 

and 

 

Posterior Distribution: 
Combining the likelihood function with the prior via Bayes' theorem yields the posterior up to 
proportionality as 

 

 

 

The posterior is complicated, and no close form inferences appear possible. We, therefore, propose to 
consider MCMC methods to simulate samples from the posterior so that sample-based inferences can be 
quickly drawn. Markov chain Monte Carlo draws samples by running a cleverly constructed Markov chain 
that eventually converges to the target distribution (called stationary or equilibrium) which, in our case, is 
the posterior distribution .There are many ways of constructing these chains, but all of them, 
including the Gibbs sampler, Geman and Geman (1984); Gelfand and Smith (1990) are special cases of 
the general framework of Metropolis, et al., (1953) and Hastings (1970). Recently, Afify et al., (2019) 
discussed the Bayesian estimation of three parameter exponential distribution and Alizadeh et al. (2020) 
presented the estimation procedures for odd log-logistic Lindley-G family of distributions. 

Gibbs sampler: algorithm  
For Gibbs sampler implementation, the full conditionals for ,  and  up to proportionality can be 
specified as  
 
 (i) The full conditional distribution of the parameter   for given ,  and  
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 (ii) The full conditional distribution of the parameter  for given ,  and  

  

 
 (iii) The full conditional distribution of the parameter  for given ,   and  

 
 

  
We shall use OpenBUGS software to obtain 
posterior samples. As the Gompertz extension 
distribution is not available in OpenBUGS, it 
requires the incorporation of a module in 
ReliaBUGSsubsystem of OpenBUGS for 
Gompertz extension (Kumar, et al., 2010; Lunn 
2010). 
 A module dgpz.ext_T (alpha, lambda, theta) 
is written in Component Pascal for Gompertz 
extension to perform full Bayesian analysis in 
OpenBUGS using the method described in 
Thomas et al. (2006); Thomas (2010); Kumar, et 
al., (2010); Lunn, et al., (2010); Lunn (2013). It is 
important to note that this module can be used for 
any set of suitable priors of the model parameters. 
Almost all aspects of the model in Bayesian 
framework can be studied using the developed 
module dgpz.ext_T (alpha, lambda, theta) 
Gibbs Sampler: Implementation  

1. Select an initial value
 to start the 

chain. 
2. Suppose at the ith-step, 

takes the value 

than from 

full conditionals, we generate.   
 from  

 from     and 

 from . 

3. This completes a transition from  to 

 
4. Repeat step 2, N times.  

 
 

MCMC Output: Posterior Sample  
Monitor the convergence using convergence 
diagnostics (trace and ergodic mean plots). 
Suppose that convergence has been reached 
after 'B' iterations (the burn-in period). Discard 
the observations and 

retain the observations  
 

Which are viewed as being an independent 
sample from the stationary distribution of the 
Markov chain that is typically the posterior 
distribution, where L is the lag (or thin 
interval).  
Consider  as the 

MCMC output (posterior sample) for the 
posterior analysis 

. 

Thus, MCMC output is referred to as the 
sample after removing the initial iterations 
(produced during the burn-in period) and 
considering the appropriate lag.  

The Bayes estimates are given by  

 
 
5. Data analysis 
Data Set: The real data set is considered for 
illustration of the proposed methodology. The 
data gives100 observations on breaking stress of 
carbon fibres (in Gba), (Nichols and Padgett 
2006). 
 
Exploratory data analysis (EDA) 
The goal of data analysis is to gain information 
from the data. The modern statistical data analysis 
tools include exploratory data analysis.  
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Table 5.1 Summary Statistics 

Min. Q1 Median Mean Q3 Max. Skewness Kurtosis 
0.390    1.840  2.700 2.621 3.220 5.560 0.3626 0.0432 

 
 

 
 

 
 

 
 

 
 
 
 
 
 
Exploratory data analysis is a set of methods to 
display and summarize the data: 

• displaying the data in a graph that 
shows overall patterns and unusual 
observations (bar chart, histogram, 

density curve) 

• computing descriptive statistics that 
summarize specific aspects of the data 
(centre and spread).  

We have applied the basic EDA techniques, and 
the results are presented in Table 5.1, and 
corresponding graphs are displayed in Figure 5.1. 
The total-time-on-test (TTT) plot is a graphical 

procedure to get some idea about the shape of the 
hazard function. We have used the empirical 
version of the scaled TTT plot (Aarset 1987).  We 
have plotted the empirical version of the scaled 
TTT transform of the data set in Figure 5.2. Since 

the empirical version of the scaled TTT 
transform is concave, it indicates that the hazard 
function is increasing. 

 
 

 
Fig 5.2 The empirical scaled TTT transform of the 

data set 
 

The empirical modelling involves the following 
steps:  

1. Model description and estimation of its 
parameters; 

2. Model validation; and  
3. Model selection. 

Effective modelling requires a good 
understanding of the properties of different 
models. The estimation of the parameter of the 
proposed model is obtained by the method of 
maximum likelihood (ML) estimation. To check 
the validity of the model, we compute the 
Kolmogorov-Smirnov (KS) distance between the 
empirical distribution function and the fitted 
distribution function when the parameters are 
obtained by the method of maximum likelihood. 

 
Fig 5.1   The boxplot (left panel), histogram and density plot (right panel) along with the data points.  
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The following graphical methods are used for 
suitability of the model under consideration:  
a) Quantile-Quantile (QQ) plot and  
b) Probability –Probability (PP) plot. 

 
Computation of MLE   
The maximum likelihood estimates (MLEs) are 
obtained by direct maximization of the log-
likelihood function  given in (3.1). 
The advantage of this procedure is that it runs 

immediately using existing statistical packages 
such as R, [R Development Core Team, (2019)]. 
We consider the software R through the Quasi-
Newton algorithm Lange (1999) to compute the 
MLEs.   
 Table 5.2 shows the ML estimates, standard 
error (SE) and   95 % confidence intervals for 
parameters alpha, lambda and theta. The 
maximized value of loglikelihood is

. 

Table 5.2   MLE, standard error and 95% confidence interval 
 Parameter MLE Std. Error 95% Confidence Interval 

Alpha 0.0678 0.00616 (0.0557, 0.0799) 
Lambda 44.3476 3.9874 (36.5324, 52.1628) 
Theta 2.5225 0.1719 (2.1856, 2.8594) 

 
Model validation 
To check the validity of the model we 
compute the Kolmogorov-Smirnov (KS) 
distance between the empirical distribution 
function and the fitted distribution function 
when the parameters are obtained by the 
method of maximum likelihood is 0.0637 
and the corresponding p-value is = 0.8117.  
We have plotted the empirical distribution 
function and the fitted distribution function 
in Figure 5.3. From Figure 5.3, it is clear 
that the fitted Gompertz distribution 
provides good fit to the given data. 
Further validation of this finding can be 

obtained by inspecting the probability-
probability (P–P) and quantile-quantile 
(Q–Q) plots. A  P–P plot depicts the points:    

 

 where   and  are the order 
statistics,  

 
A Q–Q plot depicts the points:  
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Fig 5.3    The graph of the empirical and fitted distribution 

function.  
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The Q–Q and P–P plots for the fitted model are shown in Figs. 5.4 and 5.5. It is evident that the fit of the 
Gompertz extension distribution is good. 
 
Bayesian analysis  

OpenBUGS script for the Bayesian analysis of 
Gompertz extension model 

 
model 
{ 
for ( i in 1 : N )  
{ 
x[i] ~ dgpz.ext_T(alpha, lambda, theta)   
reliability[i] <- R(x [i], x[i]) # to estimate reliability 
f[i] <- density(x[i], x[i]) # to estimate density 
hrf[i] <- hrf(x[i], x[i]) # to estimate hazard  
# To predict the data set     
ep[i] <- (i - 0.5)  / N       
 x.new[i] <- (1.0 / alpha) * log(1.0 + pow((1/lambda) 
* log(1.0 - ep[i]), 1.0/theta)) 
}   
# Prior distributions of the model parameters 
Alpha ~ dunif(0, 10) 
lambda ~ dgamma(1, 0.01) 
theta~ dgamma(0.001, 0.001)    
} 
Data 
list(N=100, x = c(0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 
1.17, 1.18, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57, 1.57, 
1.59, 1.59, 1.61, 1.61, 1.69, 1.69, 1.71, 1.73, 1.80, 
1.84, 1.84, 1.87, 1.89, 1.92, 2.00, 2.03, 2.03, 2.05, 
2.12, 2.17, 2.17, 2.17, 2.35, 2.38, 2.41, 2.43, 2.48, 
2.48, 2.50, 2.53,2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 
2.76, 2.77, 2.79, 2.81, 2.81, 2.82, 2.83,  
 
 

2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 2.97, 3.09, 
3.11, 3.11, 3.15, 3.15, 3.19, 3.19, 3.22, 3.22, 3.27,  
3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.51, 3.56, 3.60, 
3.65, 3.68, 3.68, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 
4.70, 4.90, 4.91, 5.08, 5.56)) 

Initial values  
list(alpha=0.01, lambda= 5.0, theta=1.0)# Chain1 
list(alpha=0.1, lambda= 10., theta=5.0) # Chain2 
  
We assume the independent uniform prior for 

and gamma priors for
 and with 

hyperparameter values
.  

 
We run the model to generate two Markov 
Chains at the length of 40,000 with different 
starting points of the parameters.  
We have chosen initial values 

for the first chain and
 the second chain. The 

convergence is monitored using trace and 
ergodic mean plots; we find that the Markov 
Chain converges together after approximately 
2000 observations. Therefore, the burning of 
5000 samples is more than enough to erase the 
effect of the starting point (initial values). 
Finally, samples of size 7000 are formed from 
the posterior by picking up equally spaced every 
fifth outcome (to minimize the autocorrelation 

( )1 1~ ,  U a ba

( )2 2~ ,  G a bl ( )3 3~ ,  G a bq

1 10, 10.0,a b= =

2 2 31.0,  0.01, 0.001,a b a= = = 3 0.001b =

( )0.01, 5.0, 1.0a l q= = =

( )0.1, 10.0, 5.0a l q= = =

 

Fig 5.4Q-Q plot usingMLEs as estimate Fig 5.5    P-P plot using MLEs as estimate. 
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among the generated deviates.), i.e. thin=5, 
starting from 5001.    
 Therefore, we have the posterior samples 
from chain 1 and chain 2 as 

 

and .   

 Chain 1 is considered for convergence 
diagnostics plots. The visual summary is based 
on a posterior sample obtained from chain 1, 
whereas the numerical summary is presented for 
both the chains.  

Convergence diagnostics 
Before examining the parameter estimates or 
performing other inference, it is a good idea to 
look at plots of the sequential(dependent) 
realizations of the parameter estimates and plots 
thereof. The sequential plot of parameters is the 
plot that most often exhibits difficulties in the 
Markov chain. Figure 5.6 shows the sequential 
realizations of the parameters of the model.  
 

 
History (Trace) Plot: 

 
Fig 5.6      Sequential realization of the parameters ,  and . 

 
It looks like nice oscillograms around a horizontal line without any trend. The Markov chain is most likely 
to be sampling from the stationary distribution and is mixing well. 

 

Running Mean (Ergodic mean) Plot: 

 
Fig.5.7    The Ergodic mean plots for ,  and . 

 
Generate a time series (iteration number) plot of the running mean for each parameter in the chain. The 
running mean is computed as the mean of all sampled values up to and including that at a given iteration. 
The convergence pattern based on ergodic averages is shown in Figure 5.7, indicating the convergence of 
the chain.  
 
 
 
 
 
 

( )( ) ( ) ( )
1 1 1, , ; 1, ,7000j j j ja l q = !
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Autocorrelation:  
The graph shows that the correlation is almost negligible. We may consider an independent sample from 
the target distribution, i.e. posterior.  
 
 
 
 
 
 
 
 
 
 
Brooks-Gelman-Rubin (BGR) diagnostic: 
The Brooks, Gelman and Rubin convergence diagnostic is appropriate for the analysis of two or more 
parallel chains, each with different starting values which are overdispersed to the target distribution. The 
green line represents the between variability, the blue line represents the within variability, and the red 
line represents the ratio. Evidence for convergence comes from the red line being close to 1 From Figure 
5.9; it is clear that convergence is achieved. Thus, we can obtain the posterior summary statistics.  
 
 
 
On the y-axis and the blue and green lines being stable (horizontal) across the width of the plot. 
 
 
 
 
 
 
Posterior Analysis: 
(a). Numerical Summary  
The numerical summary is presented  from chain 1 and 

chain 2.    

We have considered various quantities of interest and their numerical values based on the MCMC sample 
of posterior characteristics for Gompertz extension distribution.  The MCMC results of the posterior mean, 
mode, standard deviation (SD), first quartile, median, third quartile, 2.5th percentile, 97.5th percentile, 
skewness, arepresented in Table 5.3 for both the chains. The 95% symmetric and HPD credible intervals 
of the parameters , and  are displayed in Table 5.3 based on posterior samples from chain 1 only. 

The advantage of using the MCMC method over the MLE method is that we can always obtain a 
reasonable interval estimate of the parameters by constructing the probability intervals based on the 
empirical posterior distribution. This is often unavailable in maximum likelihood estimation.   The 
algorithm described by Chen and Shao (1999), is used to compute the HPD intervals under the assumption 
of the unimodal marginal posterior distribution. The width of the HPD is another way of measuring 
uncertainty of beliefs. If the HPD is wide, then beliefs are uncertain. If the HPD is narrow, then beliefs 
are fairly certain. 
 
 
 

( )( ) ( ) ( )
1 1 1, , ; 1, ,7000j j j ja l q = !

( )( ) ( ) ( )
2 2 2, , ; 1, ,7000j j j ja l q = !

a l q

 

Fig.5.8 The autocorrelation plots for a,  and . 

 

l q

 

Fig.5.9  The BGR plots for ,  and . 

 

l q
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Table 5.3:    Numerical summaries based on MCMC sample of posterior characteristics  
for Gompertz extension distribution 

Characteristics Chain 1 Chain 2 
alpha lambda theta alpha lambda theta 

Mean 0.0691 82.162 2.5157 0.0727 90.883 2.500 
Standard Deviation 0.0279 40.669 0.2037 0.0415 96.309 0.218 
Minimum 0.0204 0.577 1.5920 0.0206 0.183 1.495 
2.5th Percentile(P2.5) 0.0339 4.043 2.1150 0.0326 2.393 2.046 
First Quartile (Q1) 0.0503 25.090 2.3800 0.0478 22.243 2.372 
Median 0.0628 57.635 2.5150 0.0623 57.380 2.508 
Third Quartile (Q3) 0.0811 112.10 2.6530 0.0846 129.52 2.646 
97.5th Percentile(P97.5) 0.1454 306.16 2.9120 0.1711 350.02 2.892 
Maximum 0.2821 443.90 3.2910 0.4402 519.00 3.296 
Mode 0.0536 31.022 2.4987 0.0489 18.97 2.499 
Skewness 1.7491 2.046 -0.0616 3.4189 2.010 -0.526 
 

 

 
 
 

 

(b) Visual Summary 
The visual graphs include the boxplot, density strip plot, histogram, marginal posterior density estimate 
and rug plots for the parameters. We have also superimposed the 95% HPD intervals.   
 

 
Fig 5.10Left panel: Histogram, marginal posterior density and 95% HPD interval ; 

Right panel: boxplot and density strip of ,  based on the posterior sample.  
 
These graphs provide an almost complete picture of the posterior uncertainty about the parameters. We 
have used the posterior sample to draw these graphs.  

 The density strip illustrates a univariate distribution as a shaded rectangular strip, whose darkness at 
a point is proportional to the probability density. The strip is darkest at the maximum density and fades 

a

( )( ) ( ) ( )
1 1 1, , ; 1, ,7000j j j ja l q = !

  Table 5.4 :     95%  symmetric and HPD credible intervals 

Parameter Credible Interval HPD Credible Interval 

alpha (0.03391, 0.1454) (0.02682, 0.1231) 

lambda (4.0429, 306.16) (0.5765, 244.3) 
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into the background at the minimum density. It may be used to generalise the common point and line 
drawing of a point and interval estimate, by representing the entire posterior or predictive distribution of 
the estimate, Jackson (2008).   
Histograms can provide insights on skewness, behaviour in the tails, presence of multi-modal behaviour, 
and data outliers; histograms can be compared to the fundamental shapes associated with standard analytic 
distributions. 

 
Fig 5.11Left panel: Histogram, marinal posterior density and 95% HPD interval ; 

Right panel: boxplot and density strip of ,  based on a posterior samples.

Figure 5.10 represents the histogram, marginal posterior density and 95% HPD interval for  (left panel) 
and boxplot and density strip plot (right panel). We have plotted similar graphs for and displayed in 
Figure 5.11 and 5.12.  The kernel density estimates have been drawn using R with the assumption of 
Gaussian kernel and properly chosen values of the bandwidths. It can be seen that is symmetric whereas 

and show positive skewness.  

 
Fig 5.12Left panel : Histogram, marinal posterior density and 95% HPD interval ; 

Right panel: boxplot and density strip of ,  based on a posterior sample. 

 
Comparison with MLE 
We have used a graphical method for the comparison of Bayes estimates with ML estimates. In Figure 
5.13, the density functions  using MLEs and Bayesian estimates (the posterior means), 
computed via MCMC samples, are plotted. It is evident from Figure 5.13 that the MLEs and the Bayes 
estimates are quite close and fit the data very well. 

l

a
l q

q
,a l

q

ˆ ˆˆ( ; , , )f x a l q
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 Further support for this finding can be obtained by inspecting Figure 5.14. In Figure 5.14, we have 
plotted quantiles of the estimated density; it can be considered as an evaluation of 

model fit, based on the posterior sample,  .  

 

 
Fig 5.13   The density functions using ML                 Fig 5.14   Density estimatesand Bayesian estimates 
 
 We have computed the density function at each observed data point for 7000 posterior samples, using 
logical function density () in OpenBUGS 

. 
 The density corresponding to MLE has been plotted using the “plug-in” estimates of the parameters. 
It shows that we have a fairly good model for the given data set.  
 
Estimation of the reliability function  
 
In this section, our main aim is to demonstrate the effectiveness of the proposed methodology. For this, 
we have estimated the reliability function using posterior samples. Since we have an effective  
MCMC technique, we can estimate any function of the parameters.  
We have used the Kaplan-Meier estimate of the 
reliability function to make the comparison more 
meaningful. The Figure 5.15, exhibits the 
estimated reliability function (dashed blue line: 

 quantiles; solid red line: 
quantile) using Bayes estimate based on MCMC 
output and the empirical reliability function 
(solid black line). Figure 5.15 shows that 
reliability estimate based on MCMC is very 
close to the empirical reliability estimates.  
 
Estimation of hazard and reliability at 

 

Indeed, the MCMC samples may be used to 
summarize the posterior uncertainty about the 
parameters completely, and through a 
kernel estimate of the posterior distribution. 

th th th2.5 , 50 and 97.5

( )( ) ( ) ( )
1 1 1, , ; 1, ,7000j j j ja l q = !

( )( ) ( ) ( )
1 1 1; , , ; 1, ,7000 ; 1, ,100j j j

if x j ia l q = =! !

th th2.5 and 97.5 th50

( )30 2X :  t  .= 0

a l q

 

Fig 5.15 Reliability function estimate using 
MCMC and Kaplan-Meier estimate 
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This is also true of any function of the parameters, e.g. reliability and hazard functions. Suppose we wish 
to give point and interval estimates for reliability and hazard functions at the mission time t=2.0 (at the 
30th observed data point). 
 We have computed the hazard and reliability functions at mission time t=2.0 (at the 30th observed 
data point) for 7000 posterior samples, using logical function hrf () and reliability (), Kumar, et al., (2010), 
in OpenBUGS. It can be computed directly using hazard and reliability functions given in (4.1.4) and 
(4.1.3), respectively.  

and  

 
Fig. 5.16     Visual summary of reliability(left panel) and hazard(right panel) at t=2.0 
 
The marginal posterior density estimates of the reliability (left panel) and hazard functions(right panel) 
and their histograms based on samples of size 7000 are shown in Figure. 5.16 using the Gaussian kernel. 
It is evident from the estimates that the marginal distribution of reliability is negatively skewed, whereas 
hazard is positively skewed.  
 

 
Fig 5.17  MCMC output of h(t = 2.0) and R(t = 2.0). Dashed line(...) represents the posterior median and  
solid lines (-) represent lower and upper bounds of 90% probability intervals (HPD). 
 
A trace plot is a plot of the iteration number against the value of the draw of the parameter at each iteration. 
Figure 5.17 displays 7000 chain values for the hazard h(t=2.0) and reliability R(t=2.0) functions, with their 
sample median and 90% credible intervals. The MCMC results of the posterior mean, mode, standard 
deviation (SD), five-point summary statistics (minimum, first quartile, median, third quartile and 
maximum), 2.5th percentile, 97.5th percentile, skewness, 95% symmetric and HPD credible intervals of 
reliability and hazard functions are displayed in Table 5.5.   
 

 

( )( ) ( ) ( )
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Table 5.5 Posterior summary for reliability and hazard at t=2.0 
 

Characteristics Reliability Hazard 

Mean 0.7103 0.4584 

Standard Deviation 0.0367 0.0499 

Minimum 0.5798 0.2830 

2.5th Percentile(P2.5) 0.6358 0.3658 

First Quartile (Q1) 0.6863 0.4238 

Median 0.7114 0.4564 

Third Quartile (Q3) 0.7355 0.4910 

97.5th Percentile(P97.5) 0.7786 0.5589 

Maximum 0.8452 0.6599 

Mode 0.7169 0.4495 

Skewness -0.1692 0.1913 

95% Credible Interval (0.6358, 0.7786) (0.3658, 0.5589) 

95% HPD Credible Interval (0.6358, 0.7786) (0.3602, 0.5521) 

 
The ML estimates of reliability and hazard function at t=2.0 are computed using the invariance property 
of the MLE.  The ML estimates of hazard and reliability are  and
respectively. 

Model compatibility: 

Posterior predictive checks 
A natural way to assess the fit of a Bayesian model is to look at how well the predictions from the model 
agree with the observed data, (Gelman 2003); (Gelman et al., 2004). We do this by comparing the posterior 
predictive simulations with the data. 
 

( )ˆ 2.0 0.4606h t = = ( )ˆ  = 2.0 0.7170R t =
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Fig 5.18 Density estimates of the smallest  and largest order future observations, vertical 
linesrepresent corresponding observed values 

 
There are several approaches available for the study of model compatibility in the Bayesian framework. 
Predictive simulation is an easiest and flexible one. The basic idea of studying the model compatibility 
through predictive simulation is to compare the 
observed data or some function of it with the data that 
would have been anticipated from the assumed model 
called the predictive data. If the two data sets compare 
favourably, the assumed model can be considered to 
be an appropriate choice for the data in hand (Gupta, 
et al., 2008).  

Modern Bayesian computational tools, however, 
provide straightforward solutions as one can easily 
simulate predictive samples if MCMC outputs are 
available from the posterior corresponding to the 
assumed model. Most of the standard numerical and 
graphical methods based on predictive distribution 
can then be easily implemented to study the 
compatibility of the model. One of the best ways to 
assess model adequacy based on posterior predictive 
distributions is graphical.  

To obtain further clarity on our conclusion for the 
study of model compatibility, we have considered 
plotting of density estimates of smallest, largest and 
30th smallest, i.e.  replicated 

future observations from the model with the superimposed corresponding observed data. For this purpose, 
2000 samples have been drawn from the posterior using MCMC procedure and then

The density estimates based on replicated future data sets are shown in Figures 5.18 and 5.19. Figure 5.18 
represents the estimates corresponding to the smallest and largest predictive observations, whereas the 
same for 30th smallest observations is shown in Figure 5.19. The corresponding observed values are also 
shown using vertical lines. obtained predictive samples from the model under consideration using each 
simulated posterior sample. The size of predictive samples is the same as that of the observed data. To 

( )(1)X ( )(100)X

( )(1) (100) (30),X X and X

Fig 5.19 Density estimates of the , vertical 

lines represent corresponding observed values 

 

(30)X
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obtain further clarity on our conclusion for the study of model compatibility, we have considered plotting 
of density estimates of smallest, largest and 30th smallest, i.e.  replicated future 

observations from the model with the superimposed corresponding observed data. For this purpose, 2000 
samples have been drawn from the posterior using MCMC procedure and then obtained predictive samples 
from the model under consideration using each simulated posterior sample. The size of predictive samples 
is the same as that of the observed data.  

The MCMC results of the posterior mean, median, mode of smallest and largest and 

are displayed in Table 5.6. 

Table 5.6:  Posterior characteristics 
 Observed Mode Mean Median 
X(1) 0.39 0.388 0.395 0.441 
X(30) 2.00 2.009 2.015 2.092 
X(100) 5.56 5.234 5.316 5.473 

In fact, we have predicated the entire data set.  Figure 
5.20 represents the Q-Q plot of predicted quantiles vs 
observed quantiles.  We, therefore, conclude that the 
Gompertz extension model is compatible with the 
given data set. 
As Figures 5.18 and 5.19 show, the posterior 
predictive distributions are centred over the observed 
values, which indicates a good fit. In general, the 
distribution of replicated data appearsto match that of 
the observed data fairly well. Overall, the results of 
the posterior predictive simulation indicate that the 
model fits these data particularly well. 

Conclusion 
We have discussed the Markov chain Monte Carlo 
(MCMC) method to compute the Bayesian estimates 
of the parameters, hazard and reliability functions of 
Gompertz extension distribution based on a complete sample. We have obtained the probability intervals 
for parameters, hazard and reliability functions. We have presented the model compatibility via the posterior 
predictive check method.  We have applied the developed techniques on a real data set. Thus, the tools 
developed can be applied for full Bayesian analysis of Gompertz extension model.

( )(1) (100) (30),X X and X

( )(1) (100)X and X

(30)X

 
Fig. 5.22    Q-Q plot of predictive quantiles versus 

empirical quantiles 
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