Biological Control of Oomycetous Plant Pathogens: A Review

Anupama Shrestha¹, Sung Hee Park⁴, Bhushan Shrestha³, Kangmin Kim^{1,2}, Jong Chan Chae^{1,2}, and Kui Jae Lee^{1,2}

¹Division of Biotechnology, Chonbuk National University, Iksan 570-752, Korea ²Advanced Institute of Environment and Bioscience, Chonbuk National University, Iksan 570-752, Korea ³Institute of Life Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Korea ⁴ Department of Rehabilitation Medicine, School of Medicine, Chonbuk National University, Jeonju, 561-756, Korea *e*-mail: leekj@jbnu.ac.kr

Abstract

Oomycetes are generally known as water molds, and include diverse plant pathogenic organisms. In this review, we summarized plant diseases mainly caused by oomycetes and highlighted ongoing trends in controlling and managing these pathogens using eco-friendly ways.

Key words: antagonistic microorganisms, biological control, oomycet

Introduction

Oomycetes, commonly known as water molds (Winter 1880) are detrimental plant pathogens infecting a wide range of host plants such as native weeds, ornamental plants, and trees (Erwin & Ribeiro 1996, Margulis & Schwartz 2000, van West *et al.* 2003, Sanogo & Ji 2012). The pathogenicity of oomycetes is rendered by their spore production, development of infecting structures, and dispersal of spores (Endo & Colt 1974, Kramer *et al.* 1997). In molecular aspects, effector proteins recognized by signature amino acid motifs RxLR (arginine, any amino acid, leucine, arginine), and dEER (a string of acidic amino acids followed by arginine) are known to facilitate the oomycetes virulence in host plant (Kale & Tyler 2011, Tyler 2011).

Oomycetes are being controlled by numerous approaches which include clean nursery stock, use of resistant varieties, chemical, physical, and systemic fungicides. Biological control agents (BCAs) are also used to suppress oomycetes and their related diseases (Pal & Gardener 2006, Lee *et al.* 2005, Sang & Kim 2012). Aside from these, however, various *Pythium*-and *Phytophthora*-causing diseases exhibited the

resistance to BCAs such as propamocarb, mefenoxam, and metalaxyl, no longer (Titone *et al.* 2009, Moorman & Kim 2004, Parra *et al.* 2001). Therefore, development of more advanced and efficient biological control is of utmost necessity for future success to control oomycetes. This mini review summarized major diseases caused by oomycetous pathogens, efficient BCAs against oomycetous diseases, and their relevant mechanisms.

Major diseases caused by oomycetes

The plant pathogenic oomycetes contains many taxa and exhibit remarkably diverse lifestyles ranging from obligate biotroph to necrotroph (Agrios 2011). General life cycle of these pathogens can be exemplified by *Phytophthora capsici* (Fig 1a). Few representative disease symptoms caused by them are shown in (Fig 1b). The diseases caused by major genera such as *Phytophthora, Pythium, Peronospora, Albugo,* and *Aphanomyces* are summarized in (Table 1). Species of *Pythium, Phytophthora, Aphanomyces* and *Rhizoctonia,* etc. are known to cause damping-off disease (Agrios 2011). *Albugo candida* causes white rust on *Erysimum crassicaule* (Mirzaee *et al.* 2009). Soil borne *Phytophthora* and *Pythium* spp. are also widespread and cause major losses on crops of soybeans (Schmitthenner 1985) and avocados (Cohen 1981, Darvas *et al.* 1984). In addition, *Phytophthora* and *Pythium* spp. were responsible for many pre- and post-harvest problems on fruits and vegetables, including brown rot of citrus (Cohen 1981a, b, 1982, Gutter 1983), and black pod of cocoa (McGregor 1983, 1984). Recently, new diseases are emerging caused by these oomycetes; for example, severe rotting and blight of seedlings of soybean (Tomioka *et al.* 2013), root rot disease of legumes (Gaulin *et al.* 2007), etc. New species were also reported in many crops: *Pythium solare* (wilt and death of adult plants of

Phaseolus vulgaris) (de Cock et al. 2008), Pythium myriotylum (root and crown necrosis) (Serrano et al. 2008), Phytophthora bisheria (raspberry, rose, and strawberry diseases) (Abad et al. 2008), Pustula sp. (sunflower white rust) (Rost & Thines 2012), Pythium echinogynum (severe "damping-off pathogen" to tomato and cucumber seedlings) (Balghouthi et al. 2013), etc. Some other oomycetes such as Phytophthora gallica (Jung & Nechwatal 2008), Pythium indigoferae, and Pythium irregulare (Souli et al. 2011) caused diseases in oak and apple trees, respectively.

Fig. 1a. Diagram depicting the life cycle of *Phytopthora capsici*.

Life cycle figure was provided by C.D. Smart, Cornell University, with some modifications.

Oospores; Reproduced by permission, from Gallup, C. A., Sullivan, M. J., and Shew, H. D. 2006. Black shank of tobacco. The Plant Health Instructor. DOI: 10.1094/PHI-I-2006-0717-01.

Photo courtesy Zoospores: Fred Brooks, University of Hawaii at Manoa, Bugwood.org.

Anupama Shrestha et al./Biological Control of Oomycetous....

Fig. 1b. Representative photographs of some disease symptoms caused by oomycetes:

a) Symptoms of Phytopthora blight on pepper plant with characteristic wilting due to Phytopthora capsici leonian, b) Downy mildew on lettuce plant by Bremia lactucae, c) White rust on morning glory leaf with heavy sporulation of white rust caused by Albugo ipomoe panduratae, d) White rust on mustard with white rust pustules on the leaf underside due to Albugo candida, e) Downy mildew on soyabean caused by Peronospora manshurica, f) Damping off of tobacco with characteristic large and wet lesions caused by Pythium sp. pringsh., g) Damping off characterized by root rot external symptoms on mature beet, superficial scaring caused by Aphanomyces cochlioides, and h) Damping off of common bean caused by Pythium spp.

Photo courtesy; a, b, c, d; Gerald Holmes, Valent USA Corporation, Bugwood.org.

e; Clemson University, USDA Cooperative Extension Slides Series, Bugwood.org.

f; R. J. Reynolds, Tobacco Company Slide Set, Bugwood.org. g; Oliver T. Neher, The Amalgamated Sugar Company, Bugwood.org.

h; Howard F. Schwartz, Colorado State University, Bugwood.org.

Pathogen	Disease caused	References			
Phytopthora species	Root rot pathogen of soybean	Tyler 2007, Souli et al. 2011, Sang et al. 2013			
	Root and crown necrosis of bean	Abad et al. 2008			
	Damping off disease	Agrios 2011			
	Root rot on ginseng	Sang et al. 2006			
Pythium species	Damping-off, root-rot damping-off pathogen" to tomato and cucumber seedlings	Cohen 1981a, Cohen 1981b, Cohen 1982 Van West <i>et al.</i> 2003, Schmitthenner 1985, Cohen 1981a Balghouthi <i>et al.</i> 2013			
	Root rot disease of legumes	Cohen 1981b, Cohen 1982, Gutter 1983, de Cock <i>et al.</i> 2008, Serrano <i>et al.</i> 2008, Balghouthi <i>et al.</i> 2012			
Peronospora Bremia,		Souli et al. 2011			
Plasmopara	Various downy mildews	Agrios 2011			
Albugo species	White blister	Abbasi & Mohammadi, 2009			
	Sunflower white rust	Rost & Thines, 2012			
Aphanomyces	Damping off disease	Agrios 2011, Gaulin <i>et al</i> . 2007			

Table 1	. Im	portant	t plan	t pat	hogen	ic oomy	cetes	and c	liseases	caused	by	them
---------	-------------	---------	--------	-------	-------	---------	-------	-------	----------	--------	----	------

Biological control of oomycetes and mechanisms involved

Microorganisms from different sources such as rhizosphere and phylloshere can potentially reveal biological control effects against different plant pathogenic oomycetes. In mechanistic basis, these microorganisms control the target pathogens by antibiotic production, root colonization, nutrient competition, induced systemic resistance, plant growth promotion, mutualism, mycoparasitism, and predation. Some of the common bacteria, fungi, and actinomycetes against oomyceteous pathogens were summarized (Table 2). The most effective bacterial isolates were *Pseudomonas*, *Bacillus*, *Lysobacter*, *Enterbacter*, and *Paenibacillus*. Fungi such as *Trichoderma*, endophytic *Fusarium*, and *Ganoderma* spp. also controlled oomycetes. Moreover, about 9% of the total number of isolated bacteria identified as Firmicutes, α -Proteobacteria, γ -Proteobacteria and Actinomycetes exhibited anti-oomycetic activity (Bibi *et al.* 2012).

Name of BCAs	Target disease(s)/ pathogen (s)	Product name (if available)	Mode of action	Reference
Bacteria				
Bacillus licheniformis	Turfgrass diseases	Ecogurad TM		Nelson 2004
Bacillus				
lentimorbusWJ5a17				
mutants	Pythium root rot		Radiation	Lee et al. 2003
	Soybean seed, and root	TM		
Bacillus pumilus	rots (Pythium)	GB34 ^{1M}		Nelson 2004
.	Various foilar, and root	TT II I TM		
Bacillus subtilis	diseases	Kodiak ¹		Nelson 2004
	Seed, seedlings, and root	Avogreen TM ,		N.1. 2004
Burkholderia cepacia	rots (Pythium)	Deny ^m		Nelson 2004
Bacillus				
<i>amyloliquefaciens</i> , and	Pythium			Elazzay <i>et al.</i>
P seuaomonas aeruginosa	apnaniaermatum		Colonization and	2012
	Phytopthore blight of		colonization, and	
Chrysophactarium	Pepper Phytopthora		of HCN with	
waniuansa strain K 19C8	cansici		swarming effect	Kim et al. 2012
wangaense, stant 13900	Pythium seed rot and		swarming erreet	Nelson 1988 van
Enterobacter cloacae.	pre-emergence damping-		Competition for	Diik & Nelson
and Erwinia herbicola	off of cotton		nutrient (fatty acid)	2000
			Volatile organic	
			compound 2,4-di-ter-	
			butylpheonl inhibits	
			mycelial growth,	
			sporulation, zoospore	
Flavobacterium			formation, and	Sang & Kim,
johnsoniae strain GSE09	Phytopthora capsici		colonization	2012
Fluorescent				Mezaache et al.
Pseudomonad spp	Pythium ultimum,			2010
	Damping off,			
	Peronosporomycetes,			
Lysobacter sp strain SB-	Aphanomyces		Colonization, and	
K88	cochlioides		antibiosis	Islam <i>et al</i> . 2005
			Antibiosis;	
			production of	
			secondary metadolite	
Insohactor antibiotions	Phytopthora blight of		4- hudroxyphenylacetic	
HS174	nenner		acid	Ko et al 2009
11.712-1	r-ppor			110 01 01. 2007

Table 2. Biological control agent (BCA) and some commercial microbial inoculants for control of plant disease

Anupama Shrestha et al./Biological Control of Oomycetous....

Lysobacter enzymogenes 3.1 T8	Pythium root rot in cucumber, <i>Pythium</i> aphanidermatum		Colonization; root of cucumber plant Production of organic acids such as propionic or lactic	Folman 2003,
Lactic acid bacterial strains	Pythium ultimum		pH, accumulation of H ₂ O ₂ ; antimicrobial compounds Effective selection procedure,	Lutz et al. 2012
Novosphingobium capsulatum strain YJR107	Phytopthora blight of pepper, <i>Phytopthora capsici</i>		colonization, and inhibition of mycelial growth	Sang <i>et al</i> . 2013
CCR80), and Chryseobacterium indologenes ISE14	Phytopthora blight of pepper, <i>Phytopthora capsici</i>		Antagonism, inhibition of mycelial growth Antagonism;	Sang <i>et al.</i> 2008
Pseudomonas fluorescens EBL 20-PF	<i>Pythium</i> <i>aphanidermatum</i> Pythium damping off, and Aphanomyces root		inhibition of mycelial growth; Induce systemic resistance	Muthukumar <i>et al.</i> 2011
Pseudomonas cepacia	rot of peas		Seed colonization 2,4- diacetylphloroglucino	Parke <i>et al.</i> 1991
Pseudomonas fluorescens F113	Pythium ultimum damping-off of sugar beet		l; a natural phenol renders antiphtyopathogenic action Antibiosis,	Dunne et al. 1998
Pseudomonas flourescens CV69 and V11	Cucumber root, and crown rot by <i>Phytopthora dreschsleri</i> <i>Pythium ultimum</i> or <i>Pythium</i>		siderophores, and indole-3-acetic acid (IAA)	Maleki <i>et al.</i> 2010, Maleki <i>et</i> <i>al.</i> 2011
Pseudomonas marginalis Pseudomonas	aphanidermatum	AtEze TM ,	growth	Gravel <i>et al</i> . 2005
chlororaphis Pseudomonas aeruginosa	Pythium damping off of	Cedomon	Antibiosis due to siderophere mediated	Buysens <i>et al.</i>
strain 7NSK2 Pseudomonasv sp	tomato Rhizoctoina, and Pythium root of wheat		Antagonism,	1996, Williams & Asher1996
Paenibacillus polymyxa GBR-462	Phytopthora capsici Phytopthora		muotion of mycelium growth, and zoospore formation	Kim et al. 2009
Paenibacillus polymyxa	palmivora, and Pythium aphanidermatum		Biofilm formation, and niche exclusion Production of	Timmusk <i>et al.</i> 2009
Paenibacillus lentimorbus WJ15	Phytopthora capsici,and Pythium ultimum		antifungal metabolites	Lee et al. 2008

Nepal Journal of Science and Technology Vol. 15, No.1 (2014) 157-166

			1	1
Paenibacillus sp	Damping off (Pythium) Pythium ultimum, and		Indirect; Inducing plant systemic resistance by plant growth promotion	Li <i>et al</i> . 2007
Rhizobacteria	Aphanomyces cochlioides on sugar-beet seedlings		Colonization, and antifungal metabolites	Mavrodi <i>et al.</i> 2012
Rhizobium	seedings			2012
leguminosarum Jordan	Pythium damping-off of			
bv. Viceae Serratia plymuthica	pea, and sugar beet		Colonization Inhibition of mycelium growth, and zoospore	Bardin <i>et al</i> . 2004
A21–4,	Phytopthora capsici		formation	Shen <i>et al</i> . 2002 Dunne <i>et al</i> 1997, Dunne
Stenotrophomonas maltophilia W81	<i>Pythiumultimum</i> damping -off of sugar beet		Production of extracellular protease	<i>et al.</i> 1998
Fungi Chaetomium cupreum/C. globosum	Disease caused by Phytophthora	Ketomium (R) TM		Nelson 2004
Chaetomium globosum Clonostachys rosea	Phytopthora infestans Pythium tracheiphilum Pythium ultimum, Phytophthora		PGP Antioomycete	Ramarethinam <i>et</i> <i>al.</i> 2008 Moller <i>et al.</i> 2003
Fusarium oxysporum EF119	infestans, and Phytophthora capsici		Bikaverin, and fusaric acid Direct; antibiosis and mycoparasitism	Kim <i>et al</i> . 2007, Son <i>et al</i> . 2007
<i>Fusarium oxysporum</i> Strain Fo47	Pythium ultimum	Soil	indirect; inducing systemic resistance	Benhamou <i>et al.</i> 2002
Glicocladium virens	Seed seedlings, and root rots (<i>Pythium</i>)	Guard TM , Gliomix TM	Inhibition of	Nelson 2004
Ganoderma appalantum	Sclerospora graminicola		sporangia, zoospore release, and zoospore motility, <i>Phoma</i> impairs <i>P.</i> <i>parasitica</i> mycelium	Sudisha & Shetty 2009
Phoma nov.sp	Phytopthora parasiticia		growth, and prevents <i>P. parasitica</i> infection of the leaf Induction of defense-	French patent application (FR 1051767)
Trichoderma viride	Pythium		related enzymes, and	Muthukumar et
(TVA) Trichoderma	aphanidermatum Pythium damping-off		phenolic compound	<i>al.</i> 2011 Yang <i>et al.</i> 2004
Actinomycetes	r yunun damping-on			1 ang et ut. 2004
A stin on lan soo amn an dat	Dudium		Antibiosis; cell wall	El Tombily et al
us. Micromonospora	r yınıum aphanidermatum		and inducing	2010. El-Tarabily
<i>chalcea</i> , and	damping off disease of		systemic resistance in	<i>et al.</i> 2009, El-
Streptomyces spiralis	cucumber		cucumber plant	Tarabily 2006
Actinoplanes spp	Phytophthora megasperma f. sp. Glycinea Wilte good and meta-ta-ta-	Muoostar TM	Antagonism	Filonow & Lockwood 1985
sirepiomyces	withs, seed, and root rols	wrycostop		11015011 2004

Mechanisms of anti-oomycetic activity are mainly due to colonization, antibiotic production, hyphal lysis, sporangium abortion, oospore parasitism and siderophore production (Buysens et al. 1996, Broadbent et al. 1971, Drapeau et al. 1973, Honor & Tsao 1973, Broadbent & Baker 1974, Wynn & Epton 1979). Colonization of bacteria (e.g. Enterobacter cloacae) resulted in a competitive exclusion of nutrients from Pythium, Phytopthora capsici, and Phytophthora cactorum (Nelson 1988, Sang et al. 2007, Sang et al. 2006). Various antibiotics and lytic enzymes produced by microorganisms revealed antagonism against oomycetes (Dunne et al. 1997, Lee et al. 2003, Lee et al. 2008, Timmusk et al. 2009, Muthukumar et al. 2011). Recently, Streptomyces producing chitinase, β-1, 3-glucanase, lipase and protease showed direct lysis of Phytophthora capsici hyphae (Nguyen et al. 2012). In addition, Pseudomonas ûuorescens and Serratia plymuthi showed the antagonisms to Pythium aphanidermatum and Phytophthora capsici (Muthukumar et al. 2011, Shen et al. 2002). The compounds originated from Streptomyces koyangensis and Ganoderma appalantum restricted the growth of oomycetes (Lee et al. 2005, Sudisha & Shetty 2009).

On the other hand, various BCAs were suggested to control oomycetes by modulating the induced systemic resistance (ISR) of host plants either directly or through volatile organic compounds produced by them (Benhamou *et al.* 2002, Sang & Kim 2012). Most of the BCAs reported are able to suppress more than one pathogen; however, some of them were pathogen specific and even some were host-specific showing selective influence of BCAs (Maurhofer *et al.* 1994, Van Dijk & Nelson 2000, Mavrodi *et al.* 2012, Sang *et al.* 2013). Combination treatment of bacteria-fungi or bacteria-bacteria are also effective to control oomycetes (Dunne *et al.* 1998, Muthukumar *et al.* 2011).

Future perspectives

Development of anti-oomycetic BCAs is very important and utmost necessity for managing oomycetic diseases as it is considered as an alternative or a supplemental way of reducing the use of chemicals in agriculture (De weger *et al.* 1995, Gerhardson 2002). More researches should be carried out to elucidate the mechanism involved in the microorganism-pathogen interaction and to identify the novel efficient BCAs in future to establish sustainable BCAs against oomycetous diseases. Finally, we can conclude that different biological control approaches summarized in this review can shed light on future directions in developing and choosing different biological control agents against oomycetes.

Acknowledgements

This work was carried out with the support of Cooperative Research Program for Agriculture Science & Technology Development (PJ009411) RDA, Korea, the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (No2011-0020202), and the research funds of Chonbuk National University.

References

- Abad, Z.G., J.A. Abad, M.D. Coffey, P.V. Oudemans, W.A. Man in't Veld, H. de Gruyter, J. Cunnington and F.J.Louws. 2008. *Phytophthora bisheria* sp. nov., a new species identified in isolates from the Rosaceous raspberry, rose and strawberry in three continents. *Mycologia* **100**: 99-110.
- Agrios, GN.and J.Beckerman. 2011. Plant pathology. New York: Acad. Press.
- Balghouthi, A., R. Jonathan, S. Gognies, A. Mliki and A. Belarbi. 2013. A new species, *Pythium echinogynum*, causing severe damping-off of tomato seedlings, isolated from Tunisia, France, and India: morphology, pathology, and biological control. *Annals of Microbiology* 63: 253-258.
- Bardin, S.D., H.C. Huang, J. Pinto, E.J. Amundsen and R.S. Erickson. 2004. Biological control of *Pythium* dampingoff of pea and sugar beet by *Rhizobium leguminosarum* by. viceae. Canadian Journal of Botany 82: 291–296.
- Benhamou, N., C. Garand and A. Goulet. 2002. Ability of nonpathogenic *Fusarium oxysporum* strain Fo47 to induce resistance against *Pythium ultimum* infection in cucumber. *Applied and Environmental Microbiology* 68: 4044-4060.
- Bibi, F., M. Yasir, GC. Song, S.Y. Lee and Y.R. Chung. 2012. Diversity and characterization of endophytic bacteria associated with tidal flat plants and their antagonistic effects on oomycetous plant pathogens. *Plant Pathology Journal* 28: 20-31.
- Broadbent, P., K.F. Baeker and Y. Waterworth. 1971. Bacteria and actinomycetes antagonistic to fungal root pathogens in Australian soils. *Australian Journal of Biological Science* 24: 925-944.
- Broadbent, P. and K.F. Baeker. 1974. Behaviour of *Phytopthora* cinnamomi in soils suppressive and conducive to root rot. Australian Journal of Agricultural Research 25: 121-137.
- Buysens, S., K. Heungens, J. Poppe and M. Hofte. 1996. Involvement of pyochelin and pyoverdin in suppression of *Pythium*-induced damping-off of tomato by *Pseudomonas aeruginosa* 7NSK2. Applied and Environmental Microbiology 62: 865-871.
- Cohen, E. 1981a. Metalaxyl for postharvest control of brown rot of citrus fruit. *Plant Disease* 65: 672-675.

- Cohen, E. 1981b. Post harvest control of *Phytophthora citrophthora* with metalaxyl, and its relation to other fungi systemic fungicides 333 pathogenic to citrus fruit. *Proceedings International Society of Citricult* 2: 793-796.
- Cohen, E. 1982. Prevention of spread and contact infection of brown rot disease in citrus fruit by metalaxyl postharvest treatment. *Phytopathologische Zeitschrift* 103: 120-125.
- Darvas, J.M., J.C. Toenen and D.L. Milne. 1984. Control of avocado root rot by trunk injection with phosethyl-Al. *Plant Disease* **68**: 691-693.
- De Cock, A.W., C.A. Lévesque, J.M. Melero-Vara, Y. Serrano, M.L. Guirado and J. Gómez. 2008. *Pythium solare* sp. nov., a new pathogen of green beans in Spain. *Mycological Research* **112**: 1115-1121.
- De weger, L.A., A.J. van der Bij, L.C. Dekkers, M. Simons, C.A. Wijffelman and B. J.J. Lugtenberg. 1995. Colonization of the rhizosphere of crop plants by plant beneficial Pseudomonads. *FEMS Microbiology Ecology* **17**: 221-227.
- Drapeau, R.F., J.A. Fortin and C. Gagnon. 1973. Antifungal activity of *Rhizobium*. *Canadian Journal of Botany* 51: 681-682.
- Dunne, C., J.J. Crowley, Y. Moenne-Loccoz, D.N. Dowling,
 S. Bruijn and F. O'Gara. 1997. Biological control of *Pythium ultimum* by *Stenotrophomonas maltophilia* W81 is mediated by an extracellular proteolytic activity. *Microbiology* 143: 3921-3931.
- Dunne, C., Y. Moenne-Loccoz, J. McCarthy, P. Higgins, J. Powell, D.N. Dowling and F. O'Gara. 1998. Combining proteolytic and phloroglycinol-producing bacteria for improved biocontrol of *Pythium*-mediated dampingoff of sugar beet. *Plant Pathology* **47**: 299-307.
- El -Tarabily, K.A. 2006. Rhizosphere-competent isolates of streptomycete and non-streptomycete actinomycetes capable of producing cell-wall degrading enzymes to control *Pythium aphanidermatum* damping-off disease of cucumber. *Canadian Journal* of Botany **84**: 211-222.
- El-Tarabily, K.A., G.E.St.J. Hardy and K. Sivasithamparam. 2010. Performance of three endophytic actinomycetes in relation to plant growth promotion and biological control of *Pythium aphanidermatum*, a pathogen of cucumber under commercial field production conditions in the United Arab Emirates. *European Journal of Plant Pathology* **128**: 527-539.
- El-Tarabily, K.A., G.E.St.J. Hardy, K. Sivasithamparam, A.M. Hussein and I.D. Kurtboke. 1997. The potential for the biological control of cavity spot disease of carrots caused by *Pythiumcoloratum* by streptomycete and nonstreptomycete actinomycetes in Western Australia. *New Phytologist* 137: 495-507.
- El-Tarabily, K.A., A.H. Nassar, G.E.St.J. Hardy and K. Sivasithamparam. 2009. Plant growth promotion and biological control of *Pythium aphanidermatum*, a

pathogen of cucumber, by endophytic actinomycetes. *Journal of Applied Microbiology* **106**: 13-26.

- Endo, R.M. and W.M. Colt. 1974. Anatomy, cytology, and physiology of infection by *Pythium*. *Proceedings of the American Phytopathological Society* **1**: 215-222.
- Erwin, D.C. and O.K. Ribeiro. 1996. Proc American Phytopathol Soc Phytophthora Diseases Worldwide.
- Filonow, A.B. and J.L. Lockwood. 1985. Evaluation of several actinomycetes and the fungus *Hyphochytrium catenoides* as biocontrol agents for Phytophthora root rot of soybean. *Plant Disease* **69**: 1033-1036.
- Folman, L.B. 2003. Biological control of Pythium aphanidermatum in soilless systems: selection of biocontrol agents and modes of action. PhD Thesis. University of Leiden, The Netherlands, pp 123-143.
- Gaulin, E., C. Jacquet, A. Bottin and B. Dumas. 2007. Root rot disease of legumes caused by *Aphanomyces euteiches*. *Molecular Plant Pathology* **8**: 539-548.
- Gerhardson, B. 2002. Biological substitutes for pesticides. *Trends in Biotechnology* **20**: 338-343.
- Gravel, V., C. Martinez, H. Antoun and R.J. Twedell. 2005. Antagonist microorganisms with the ability to control *Pythium* damping-off of tomato seeds in rockwool. *Biocontrol* 50: 771-786.
- Gutter, Y. 1983. Supplementary antimold activity of phosethyl AI, a new brown rot fungicide for citrus fruits. *Phytopathologische Zeitschrift* **30**: 1-8.
- Honor, R.C. and P.H. Tsao. 1973. Lysis of *Phytopthora* parasitica oospores in soil. In : 2nd Int Congr. Plant Pathol. Am. Phytopathol . Soc. St. Paul., MN.
- Islam, M.T., Y. Hashidoko, A. Deora, T. Ito and S. Tahara. 2005. Suppression of damping-off disease in host plants by the rhizoplane bacterium *Lysobacter* sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne *Peronosporomycetes*. *Applied and Environmental Microbiology* **71**: 3786-3796.
- Jung, T. and J. Nechwatal. 2008. *Phytophthora gallica* sp. nov., a new species from rhizosphere soil of declining oak and reed stands in France and Germany. *Mycological Research* **112**: 1195-1205.
- Kale, S.D. and B.M. Tyler. 2011. Entry of oomycete and fungal effectors into plant and animal cells. *Cell Microbiology* 13: 1839-1848.
- Kim, H.S., M.K. Sang, H.W. Jung, Y.C. Jeun, I.S. Myung and K.D. Kim. 2012. Identification and characterization of *Chryseobacterium wanjuense* strain KJ9C8 as a biocontrol agent of phytopthora blight of pepper. *Crop Protection* 32: 129-137.
- Kim, H.Y., G.J. Choi, H.B. Lee, S.W. Lee, H.K. Lim, K.S. Jang, S.W. Son, S.O. Lee, K.Y. Cho, N.D. Sung and J.C. Kim. 2007. Some fungal endophytes from vegetable crops and their anti-oomycete activities against tomato late blight. *Letters in Applied Microbiology* 44:332-337.

- Kim, S.G., Z. Khan, Y.H. Jeon and Y.H. Kim. 2009. Inhibitory effect of *Paenibacillus polymyxa* GBR-462 on *Phytophthora capsici* causing Phytophthora blight in chili pepper. *Journal of Phytopathology* **157**: 329-337.
- Ko, H.S., R.D. Jin, H.B. Krishnan, S.B. Lee and K.Y. Kim. 2009. Biocontrol ability of *Lysobacter antibioticus* HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic acid and several lytic enzymes. *Current Microbiology* 59: 608-615.
- Kramer, R.F., S. Freytag and E. Schmelzer. 1997. In vitro formation of infection structures of *Phytophthora infestans* is associated with synthesis of stage specific polypeptides. *European Journal of Plant Pathology* **103**: 43-53.
- Lee, J.Y., S.S. Moon and B.K. Hwang. 2003. Isolation and antifungal and antioomycete activities of aerugine produced by *Pseudomonas ûuorescens* strain MM-B16. *Applied and Environmental Microbiology* 69: 2023-2031.
- Lee, Y.K., J.S. Kim, B.I. Jang, Y.S. Jang and H.Y. Lee. 2003. Biological control of *Pythium* root rot by radiation induced mutant of *Bacillus lentimorbus* WJ5a17. *Korean Journal of Environmental Biology* 21: 276-285.
- Lee, Y.K., M. Senthilkumar, J.H. Kim, K. Swarnalakshmi and K. Annapurna. 2008. Puriûcation and partial characterization of antifungal metabolite from *Paenibacillus lentimorbus* WJ5. World Journal of Microbiology and Biotechnology 24: 3057-3062.
- Lee, J.Y., J.Y. Lee, S.S. Moon and B.K. Hwang. 2005. Isolation and Antifungal Activity of 4-Phenyl-3-Butenoic Acid from *Streptomyces koyangensis* Strain VK-A60. *Journal of Agriculture and Food Chemistry* 53: 7696–7700.
- Li, B., S. Ravnskov, G.Xie and J. Larsen. 2007. Biocontrol of *Pythium* damping-off in cucumber by arbuscular mycorrhiza-associated bacteria from the genus *Paenibacillus*. *Biocontrol* **52**: 863-875.
- Lutz, M.P., V. Michel, C. Martinez and C. Camps. 2012. Lactic acid bacteria as biocontrol agents of soil-borne pathogens. *Biological Control of Fungal and Bacterial Plant Pathogens IOBC-WPRS Bulletin.* 78: 285-288.
- Maleki, M., S. Mostafaee, L. Mokhtarnejad and M. Farzaneh. 2010. Characterization of *Pseudomonas fluorescens* strain CV6 isolated from cucumber rhizosphere in Varamin as a potential biocontrol agent. *Australian Journal of Crop Science* **4**: 676-683.
- Maleki, M., L. Mokhtarnejad and S. Mostafaee. 2011. Screening of rhizobacteria for biological control of cucumber root and crown rot caused by *Phytophthora drechsleri*. *Plant Pathology Journal*. 27: 78-84.
- Margulis, L., M.F. Dolan and R. Guerrero. 2000. The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists.

Proceedings of the National Academy of Sciences. USA,. pp.6954-6959.

- Margulis, L. and K.V. Schwartz. 2000. *Five kingdoms: An illustrated guide to the phyla of life on earth.* W.H. Freeman & Co., New York.
- Maurhofer, M., C. Keel, D. Haas and G. Defago. 1994. Pyoluteorin production by *Pseudomonas fluorescens* strain CHA0 is involved in the suppression of *Pythium* damping-off of cress but not of cucumber. *European Journal of Plant Pathology* **100**: 221-232.
- Mavrodi, O.V., N. Walter, S. Elateek, C.G. Taylor and P.A. Okubara. 2012. Suppression of *Rhizoctonia* and *Pythium* root rot of wheat by new strains of *Pseudomonas*. *Biological Control* **62**: 93-102.
- McGregor, A.J. 1983. Experiments on the profitability of chemical black pod control in Papua New Guinea. *Tropical Pest Management* **29**: 129-136.
- McGregor, A.J. 1984. Comparison of cuprous oxide and metalaxyl with mixtures of these fungicides for the control of *Phytophthora* pod rot of cocoa. *Plant Pathology* 33: 81-87.
- Mezaache, S., A. Guechi, M.M. Zerroug, R.N. Strange and J. Nicklin. 2010. Antifungal activity of rhizospheric bacteria. *Communications in Agricultural and Applied Biological Sciences* **75**: 671-674.
- Mirzaee, M.R., M. Abbasi and M. Mohammadi. 2009. *Albugo candida* causing white rust on *Erysimum crassicaule* in Iran. *Australasian Plant Disease Notes* **4**: 124-125.
- Moller, K., B. Jensen, H. Paludson Andersen, H. Stryhn and J. Hockenhull. 2003. Biocontrol of *Pythium* tracheiphilum in Chinese cabbage by *Clonostachys rosea* under field conditions. *Biocontrol Science and Technology* 13: 171-182.
- Moorman, G.W. and S.H. Kim. 2004. Species of *Pythium* from greenhouses in Pennsylvania exhibit resistance to propamocarb and mefenoxam. *Plant Disease* **88**: 630-632.
- Muthukumar, A., A. Eswaran and G. Sangeetha. 2011. Induction of systemic resistance by mixtures of fungal and endophytic bacterial isolates against *Pythium aphanidermatum*. *Acta physiologiae Plantarum* **33**: 1933-1944.
- Nelson, E.B. 1988. Biological control of *Pythium* seed rot and pre-emergence damping-off of cotton with *Enterobacter cloacae* and *Erwinia herbicola* applied as seed treatments. *Plant Disease* **72**: 140-142.
- Nelson, E.B. 2004. Biological control of oomycetes and fungal pathogens. In: *Encyclopedia of Plant and Crop Science* (Ed. R.M. Goodman). Marcel Decker, USA, pp. 137-140.
- Nguyen, X.H., K.W. Naing, Y.S. Lee, H. Tindwa, G.H. Lee, B.K. Jeong, H.M. Ro, S.J. Kim, W.J. Jung and K.Y. Kim. 2012. Biocontrol potential of *Streptomyces griseus* H7602 against root rot disease (*Phytophthora capsici*) in Pepper. *Plant Pathology Journal* 28: 282-289.

- Pal, K.K. and B.M. Gardener. 2006. Biological Control of Plant Pathogens. Plant Health Instructor. pp. 1-25. Available via APSnet DOI: 10.1094/PHI-A-2006-1117-02.
- Parke, J.L., R.E. R, A.E. Joy and E.B. King. 1991. Biological control of *Pythium* damping-off and *Aphanomyces* root rot of peas by application of *Pseudomonas cepacia* or *P. fluoresces* to seed. *Plant Disease* **75**: 987-992.
- Parra, G. and J.B. Ristaino. 2001. Resistance to mefenoxam and metalaxyl among field isolates of *Phytophthora capsici* causing Phytophthora blight of bell pepper. *Plant Disease* 85: 1069-1075.
- Ramarethinam, S., N.V. Murugesan and S. Marimuthu. 2008. Efficacy of *Cheatomium globosum* (Symbion C) against late blight of potato caused by *Phytophthora infestans*. *Pestology* 32: 14-18.
- Rost, C. and M. Thines. 2012. A new species of *Pustula* (Oomycetes, v Albuginales) is the causal agent of sunflower white rust. *Mycological Progress* 11: 351-359.
- Sang, M.K., M.H. Chiang, E.S. Yi, K.W. Park and K.D. Kim. 2006. Biocontrol of Korean Ginseng root rot caused by *Phytopthora cactorum* using antagonsitic bacterial strains ISE13 and KJ1R5. *Plant Pathology Journal* 22: 103-106.
- Sang, M.K., J.Y. Oh and K.D. Kim. 2007. Root-dipping application of antagonisitc rhizobacteria for the control of Phytopthora blight of pepper under field conditions. *Plant Pathology Journal* 29: 109-112.
- Sang, M.K., S.C. Chun and K.D. Kim. 2008. Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure. *Biological Control* 46: 424-433.
- Sang, M.K. and K.D Kim. 2012. The volatile-producing *Flavobacterium johnsoniae* strain GSE09 shows biocontrol activity against *Phytophthora capsici* in pepper. *Journal of Applied Microbiology* 13: 383-398.
- Sang, M.K., A. Shrestha, D.Y. Kim, K. Park, C.H. Pak and K.D. Kim. 2013. Biocontrol of Phytophthora blight and anthracnose in pepper by sequentially selected antagonistic rhizobacteria against *Phytophthora capsici. Plant Pathology Journal* 29: 154-167.
- Sanogo, S. and P. Ji. 2012. Integrated management of *Phytophthora capsici* on solanaceous and cucurbitaceous crops: current status, gaps in knowledge and research needs. *Canadian Journal of Plant Pathology* 34: 479-492.
- Schmitthenner, A.F.1985. Problems and progress in control of Phytophthora root rot of soybean. *Plant Disease* **69**: 362-368.
- Serrano, Y.G., M.L. Guirado, M.P. Carmona and J. Gómez. 2008. First report of root and crown necrosis of bean caused by *Pythium aphanidermatum* in Spain. *Plant Disease* 92: 174.
- Shen, S.S., O.H. Choi, S.M. Lee and C.S. Park. 2002. In vitro and in vivo activities of a biocontrol agent, *Serratia plymuthica* A21-4, against *Phytophthora capsici*. *Plant Pathology Journal* 18: 221"224.

- Son, S.W., H.Y. Kim, GJ. Choi, H.K. Lim, K.S. Jang, S.O. Lee, S. Lee, N.D. Sung and J.C. Kim. 2008. Bikaverin and fusaric acid from *Fusarium oxysporum* show antioomycete activity against *Phytophthora infestans*. *Journal of Applied Microbiology* **104**: 692-698.
- Souli, M., N. Boughalleb, P. Abad-Campos, A.A. Ivarez, Luis A. Pe'rez-Sierra, J. Armengol and J. García-Jiménez. 2011. First Report of *Pythium indigoferae* and *P. irregular* associated to apple trees decline in Tunisia. *Journal of Phytopathology* 159: 352-357.
- Sudisha, J. and H.S. Shetty. 2009. Anti-oomycete compounds from Ganoderma appalantum, a wood rot basidiomycete. Natural Product Research 23: 737-753.
- Timmusk, S., P. van West, N.A.R. Gow and R. Paul Huffstutler. 2009. Paenibacillus polymyxa antagonizes oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum. Journal of Applied Microbiology 106:1473-1481.
- Titone, P., M. Mocioni, A. Garibaldi and M.L. Gullino. 2009. Fungicide failure to control *Pythium* blight on turf grass in Italy. *Journal of Plant Disease and Protection* 116: 55-59.
- Tomioka, K., T. Takehara, H. Osaki, H. Sekiguchi, K. Nomiyama and K. Kageyama. 2013. Damping-off of soybean caused by *Pythium myriotylum* in Japan. *Journal* of General Plant Pathology **79**: 162-164.
- Tyler, B.M. 2007. Phytophthora sojae: root-rot pathogen of soybean and model oomycete. Molecular Plant Pathology 8:1-8.
- Tyler, B.M. 2011. Entry of oomycete and fungal effectors into host cells. in: *Effectors in Plant-Microbe Interactions*. Wiley-Blackwell, Oxford.
- Van Dijk, K.V. and E. Nelson. 2000. Fatty acid competition as a mechanism by which *Enterobacter cloacae* suppresses *Pythium ultimum* sporangium germination and dampingoff. *Applied and environmental microbiology* **66**: 5340-5347.
- Van West, P., A.A. Appiah and N.A.R. Gow. 2003. Advances in research on oomycete root pathogens. *Physiological* and Molecular Plant Pathology 62: 99-113.
- Williams, GE. and M.J.C. Asher. 1996. Selection of rhizobacteria for the control of *Pythium ultimum* and *Aphanomyces cochlioides* on sugarbeet seedlings. *Crop Protection* 15: 479-486.
- Winter, G. 1880. Rabenhorst's Kryptogamen-Flora, Pilze-Schizomyceten, Saccharomyceten und Basidiomyceten. Vol. 1. 2nd ed. Kummer, Leipzig, Germany. 80 pp.
- Wynn, A.R. and H.A.S. Epton. 1979. Parasitism of oospores of Phytopthora erythroseptica in soil. *Transactions of the British Mycological Society* 73: 255-259.
- Yang, Y., K.F. Chang, S.F. Hwang, N.W. Callan, R.J. Howard and S.F. Blade. 2004. Biological control of Pythium damping-off in *Echinacea angustifolia* with *Trichoderma* species. *Journal of Plant Disease and Protection* 111: 126-1.