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Abstract

The evaluation of second and higher order perturbation of energy by iterative solution of Schrodinger’s equation,

rather than evaluation of matrix element is described.
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Introduction

While there are many ways to solve Schrodinger
equation (SE) analytically, we cannot always obtain
an exact solution. Therefore, we must move on to
different approaches to obtain more precise results.
For example, if the potential energies are known then
we can formulate their corresponding Hamiltonians to
solve Schrodinger equations very precisely. Hence no
such approximations are required for the preceding
case. While there are many such Hamiltonians which
can be solve fairly easily, there are many more whose
solutions can only be approximated numerically. We
therefore have to use the widely accepted Perturbation
Theory to find approximate solutions of such
Hamiltonians—provided that they are similar to the
ones which are fairly easy to solve.

Perturbation theory works best when the system’s total
energy is “perturbed” by a small additional potential
energy (Messsiah 1962). The total Hamiltonian can be
expressed as a sum of an unperturbed Hamiltonian

(A ,)andaperturbed Hamiltonian ( £ ),

-7 +H

The plan is to expand the system of Hamiltonian, and
hence the total energy, into a sum of terms involving

higher and higher powers of g, similar to a Taylor

series expansion of a function around some value.
Since the perturbation is small, we only have to keep
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the first few terms (typically two or three terms) to
obtain a close approximation to the actual total energy.

We must be careful when using the perturbation theory
because the perturbing potential should not change
the number of bound states of the considered atoms
in the system. We can also assume that the unperturbed
states of the atoms in consideration form a complete
set. We can then express the corrected states as linear
combinations of the unperturbed states.

However, if the perturbing potential changes the
Hamiltonian of the system such that the number of
bound states is increased by one, this new state must
have come from the unbounded region. This is a
problem because the unbounded region contains a
continuum of energies. So while perturbation theory
is a very useful tool, it is not always the method of
choice.

The time independent (T1) form of the theory is best
suited to the problems with discrete energy spectrum.
The time dependent (TD) form is useful for problems
where there is a continuum of energy states; and here,
the product H't##% must less than unity. In both the
forms, the solution is obtained by expanding Eigen-
values and Eigen-functions in a series of small
parameters that represents the strength of perturbing
terms. The TISE
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HY=pgy
andfor TDSE,

BW(r,6 =1k —awg’fj

The solution of TDSE as,

P =T C (tw (re”

Here  (f) is the expansion coefficient which is our

more interest.
From TDSE, and using initial state as ground state

Ho W =E )

Hence, writing in Dirac Notation
ax : L

wx T8 ey =zome 1 p o)

in both sides and

Multiplying by bra vector (y;
integrating over all the space

-L(E, ~F,)
iHCEH(zj=§CH(£je RO Hl
-3C, e Pyl (n

Whete, Hmnm = EH - Em
ha)nm is known as transition energy.

Assuming the system is in Eigen-state | yr } att=0,

we can express the expansion coefficient for the first
order perturbation as
PRC (=0 "e ™ H' m=an

E

C ) = (GR) ' [die H @¢).....0(2)
Thus, this equation can be directly integrated, if the
perturbed Hamiltonian is known.

Hence the new wave function is known and we can
calculate the behavior of the system from this new
wave function.
¥ y=e7 lw 3

lw Y+ T O (e T
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Forthe second order
C @ =GR IO (e H

For the higher order (S'th) of perturbation, the
expansion coefficient becomes,

RO (A=ZC(he H

= 0,12 order of perturbaticn.

Here, H isthe perturbed Hamiltonian in matrix form

fue (| H [ ().

The equation (3) is the set of coupled differential
equations for ' (f) .

The matrix element { (*3|H' |w (¥}} isnonzero, and

thus we will use the selection rule by which all the
matrix elements for given perturbation vanish, except
for a few “select” ones characterized by special
changes in the quantum numbers.

We now consider a hydrogen atom, and then expose
this system to an electric field treated classically in
dipole approximation. The electric field alters the
Hamiltonian of the initial system, which in turn alters
the corresponding Eigen-energies and Eigen-states.
Perturbation theory allows us to find approximate
solutions to the perturbed Eigen-value problems by
beginning with the known exact solutions of the
unperturbed problems and then making small
corrections to be based on the new perturbing
potential.

Then, the perturbation part of the Hamiltonian is

H'=_TEF ¢ E Fevnnn, (4)

L]

Where, @ is the angular frequency of the external

radiation and & the phase difference between

different beams and & represent polarization vector

of the different beams are propagating along the same
direction.
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Now, we have evaluated the transition between the

continuum states of two Eigen states |g} as initial
state for (t=0) and |/} as final states at later time t.

Hm Ef Eg

where, @ is the frequency of the transition between
two states.

k@ 20 means atomhas abzorbeed the photon,

#a {0 means atomhas ermtted the photon,

Plugging equation (4) into equation (1) after performing
tintegral (Shresthaet al. 2011)

clll{r}
|r1:|+r| _1

E{flz f"lg) +

+m}

| ey 1

(a1 — )

Let the external frequency w , be nearly equal to the
transition frequency @ . Then the second term in the

above equation becomes arbitrarily large with respect
to the first. Still for the fixed time tand H (t), since we

cannot have ' (7%l . We choose sufficiently small

amount of time such that our perturbation expansion
works even when is almost equal to. Thus, we can
nealect the first term aivina

- € -1
cUnoE {:f|£‘ r|g>[mi|
The probability of atom at time tis
R
- -1
5 12 'rlg}|[h}

0oE

Using the identity operator,
le" -1| =201 - cos8h = dsin &/2
Hence, the probability at time tis,
F

- ity [[a
D8 1|8 +|g)

[

—af £ 2]
_mj
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The transition rate
T DE (7|8 »|g) 6w -a)

The first order correction gives the ordinary, linear
opti cal properties of material.

For second order correction
C el [é&xn T e :

O [dif {n|E  »

IE in|8 -r|g)x
[E TEE _1:| .
B —

(@ —an

Here o = E —E =ha

1 - -

CUH0E m(f|£-r|ﬂ}{rz|g-r|g‘;x
e T

(@ —a) (@ —an)
The probakility is
F

1

E . m)<f|£ r|rz (1| - r|g}
D [ i 09, =0

e —l_e -1

_(m -2 (@ —an

Similaly  for  theee  photon,  after peforming

integyation,
i
0E (/]2 rlrhim|& -7ln[E- A
g -1 g -1

(@ —alw —2a)(a —3@) _{m_ —ai(w —2a@ —)
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The probability of atom in |f} at timetis

P

BT T {f|§ -r|m}{m|§ -r|n}{n|§ -r|g;'|
(@ —aam  — 2an)
0

g -1
(@ —3ar)

The trangtion rate for modtiple beans Jk and], can

ke expressed as

For first order cotrection
FUDE |if]E +lg)
For two and three photons
r
0E E & {f|§-r|n}{n|§-?‘|g}|:(m-1_mj:|
o
T I {F|E r|milm|E r|n)x
E E E

. 1
(nlé 'r|g>[(m_ . —2:11:]:|

The calcoudation of iordzati o rate has been reducing to
atnatter of evaluding matriy element.

Letus dencte the matrir elem et of the form
by M as

For first arder correction

MU O{f|E r|g)

For second order cortection

Z e 'rln}(ﬂlf'rlg}} -

I o

T

For third ordet correction
jiti)

0

(@ —a@na —2a)

EE | -r|mim|E r|uiin|E r|,g::|:|l:®
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Dalgarno andLewis (Da garno ef @l 1956) developed a
sitiple and practical method to solve pertirbation
equations, the method was later adopted by many
athors to tackle a variety of problems. This method
(Francisco 1952) condsts of writing the pertrbation
corection to the Eigen function as

VY (m=F (¥ (rn,p=012 ..

And solvng the readting equations, the Dagarno
cpetator F (¥ thas becomes,

—%?F —1;—?‘-11 NF+FF -nFEF =1

Iy this equaticty, % is the gradient wector operator atd
the dot stand for the standard scalar product These
equations  are easier to solve than the orignd
differential ecuation for the perbwrbation corrections. In

F

polynoia function of the coordindges For F =1 is
sutable solution to the ecuation of order zero, and F

many cases the correction factors are simple

does not appear in the perbwbation ecuation The
Dalgatrnio—Lewis method (Wand o o 1996) allows us
to caleulate the perturbation series to bighet orders for
ot degenerate states The method iz based on
corrveraon of Eigen walue problem into series of
inhomogeneous differential equation Thess equations
determine successively the correction to the Eigen
function and the energy correction are obtaned by
sitnple expectation walue (Sckiff 19687

In ow cacuations as shown in
equaticn. (8],  we

equaticn () and
assumed two  awiliary

F

dimensionless operators for o photons  as K

have

?

and O, for three photons, where Fok  are the
tonber of beatr s having same frequency, bt differ et

polarization wectors propagating dong the same
cirecton
Euation (37 is evaluated by defining F o auhas

oy

(£ -F)|gh=[FH -HF +aF]|g)

E Fiwy=[FH —-HF +aF



N. Shrestha/Perturbation Theory and Dalgarno......

How, the equation (5) becomes,

u ={s|& HF|g)

Here, H =—1—?—1—
2 r

Thus(& - Fyr

YR
= Tr,.-,r+ VR Wyt oy (T

Similarly for three photon ionization, we define &
ach as,

(£ -F}F’|g:}=[G H-HG +a3 ]|g}
The ecuati on (6) becomes,

M ={f[E Dag)

(F F)Fy

3
w+ VG Vet (5

In general for the higher crder, this can be done by
defiring a set of n—71 operators K, with o=
1,2, ---n— 1 sach az(Delone 15997

(F -FIF |gt=(FH -HF +naF)|gh

In bomdrogen atom, the electron potential iz the well
spherically symmetric coulomb  potential,
owitig to the sphercdly symmetric, it is wery
cotreenient to solve TDSE in spherical coorditates
(Griffiths 19997,

knoarn

Let F=(f Fifiar

Where, (E -F) iz the angolar part given by Legendre
polsnomial and wnbnown o, ) strplyas Fis the
radial part.

After a few manipalaticns the differential ecuation for
twro photot iomzation taces the form,

P A=A A Rar -0 =0

Similarly for three photor, after assuming
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1. .
frige = I:: g

1e : L T .. : 2
CEy =T ]y:-l—.tj--.l_kgl-.

Then after some algebra we can hawve the simp
cifferential equation as

rg "w(2=-2r1g +dar = %r Fi
4
rg "+(6-1r)g +(dor - g = of

Here we have used the method of Laplace transfor
(Trwe 1958) for the schation of this differertial ecuatic
(Fadhali shavan of ol 2004).

B(p, g A4 =de " "Kipg,4, 5

-2 y y
K{p,q,i,sj={mJ (s+4) “(s-A)

Findly, we can hawve {7 as

A= 2 Legratn
& 2
L sg1atn
3
, 2y kiiaL
i EGRTAD

where A = J(L- 2y and A = J(1 -da)

20) = =

F(22 4,47

2 |r 1 3
gr= 5[14‘5(1—21)—5}

1

-— 0,0, 4,5
34w @ )

1 A 1 1
- —|:;r +—r——(1+ —)]qj[:l,l, A.1L7)
Py Py A

A
1 1 KL AL 0f
_ 1+_ lfﬁ I:]': £l H :f:]
3@ A K[:]-:]-:A :fj
1-2a 2 2
= -——- + =
all +47 @ f+3 (F+A)
(0,0,4,57)

Results and Discussion

The idea of DL method is to define an auxiliary operator
such that the evaluation of intermediate sum is not
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needed. Now, the difficulties associated with the
infinite summation is reduced to the problem of finding
an appropriate expressions for the operators

Fand =, .

We have explored the technique of evaluating higher-
order perturbation theory for the multiple beams of
same frequency but different polarization from the point
of view of Schrodinger’s differential equation. The
method seems very well adaptable for the problems
such as that of the hydrogen atom (Charles 1959).
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