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Abstract

In this paper, an estimate for the degree of approximation of a function belonging to Lip(a, r) class by product

summability method &, ,.C'} of its Fourier series has been established.
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and
(i) p,o =0 (R, lasn— o for every fixed
le =0 for which o #0.

g5, 8= C(s5,)=0T, 5 a5 #—>0,
] is regular
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AT
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It is remarkable to note that if A,  method is
superimposed on ] method then a new method of
sumntratility Np,.; () i obtained.
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Let ) be periodic functon with penod 2w,
integrable in the sense of Lebesgue over [-1, 1)
and belonging to Lip(a, r) class, the Fourer
series of ) is given by
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We define norm || "r by

25 1ir
171, = {I lF [ cfx} L rzl,

and the degree of approximation Eyf) be given by
(Zygmund 19597
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whetre

L, (x) = lau + 2 la, cospx+ by, sinxx is 't
2 n=l

degree trigonometric polynomial.

& function f= Lip o if,

oz +t) — £ (x)|= O™ for 0 <=1
(Titchmarsh 1939)
& function F e Lip(a, ) if

[ﬂmm_m_ﬂl ‘ﬂ} (McFadden 1942)
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If #—@ in Lip(c, r)thenit coincides with

the class Lip & .
We shall uee the following notations:
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Results and Discussion

Hardy (1913) established a theorem on (C, &),
(4>0) summability of the series. Harmonic
summability is weaker than (C, &) summability.
lyengar (1943) proved a theorem on harmonic
summability of a Fourier series. The result of
lyengar (1943) has been generalized by several
researchers like Siddiqi (1948), Pati (1961),
Lal and Kushwaha (2009), Rajagopal (1963), for
Norlund means. Varshney (1959), for the first

time, studied the sequence {» 5, (x)} by product

summability of the form (A 1), . Later on
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(M, p, )0 summability of sequence {25, (x)}
has been studied by mumber of researchers like
Sharma (1969 & 19700, Dwivedi (1963), Dikshit
(19687, Working in the same direction, Bhattand
Eathal (1968) obtained interesting results on
(C,10E, 1N summability of Fourier series and its
cotjugates  series. These results are recenily
generalized by Lal & WVerma (199%). Here

NLI?.C'lsmnmahility is considered. Np,‘q.lifl
summatility reduces to Nr .C'l if o, = 1¥ &

NGO, if p,=1¥n. The degree of
approximation by Cesdro means, Harlund means,

N felipa,

F
Lipi{e, rihas teen studied by number of

teseatchers like Alexits (1925), Sahmey and Goel
(19730, Chandra (1975), Qureshi (19817, Qureshi
arnd Hema (19907 and Ehan (1974, Bt till now
tio wotk seem s to have done to obtain the degree of

approximation of the function € fip (&, »)by

atud

means of a function

product summability means of the form NFJ .Cl.

In an attempt to make an adwance study in this
directiory, in this paper, an estimate for the degree
of approximation of a function € Lip (&, )

class by MV, .U means of its Fourier series has
been established in the following form:

Theorem. Let {py) be a nonnegative, non-
increasing  sequence and { oyl be a non- negative,
tion-decreasing sequence such that
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For the proof of o theoremn following Lemras
are required:
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Proof.
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Lemma3. If /€ lip{a, ), 127 <00, then
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Proof.
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Lemma 4. The inequality

I“
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is known as generalized Minkowski’s Inecuality
where the generalization is simply replacing a
finite sum by a defirdte (Lebe sgue) irtegral.

Proof of the theorem

Following Titchin arsh (19390, ot partial sum sy
x) of the Fourier series (1) at # = x & [-@ 7] is
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Thiz completes the proof of our theorem.

Corollaries

Following corollaties can be derived from ow
theorem:

Corollary 1. Let {iy) be a non-negative, non-
increasing sequence such that

k=l

'\}11 px—.&. — C" Px
k+1 n+1

J K onz.

If f ' E — R is2nperiodic,Lebesgue integratle
over [-7L A and Lip (o, £) class function, then an
estimate &, (7 ﬂ:r“]:l for the degree of
approxitn ation of function £ by
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Example
Consider the infinite series

1+43 n (1" .

H=1
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The #" partial sum of (7) is given by

g, =1+4>k(-1*
k=1

= (2 + i(=1*
ard =0

a, =

S 2k+ (-1 = (- 1)" 99999
Hrlea
Therefore the series (7)) is not (2,10 summ able.

Bince {(—10"}is(H, p,g) summable therefore, the

series (7) is A, ) summatle. Hence the

product sumsm ability Nﬁ' q_C’l iz more powerful
than the individual methods (Hop, o) and (C,1).
Concegquently IV, . .C) hetter

apprt aximation than individual methods (M5, o) and
(1.

theaths gves
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