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Introduction

Trauma, infection, cancer, and congenital 
abnormalities are examples of spinal pathologies 

that can compromise structural stability. The spinal cord 
and nerve roots, which the spine is meant to safeguard, 
may become compressed and damaged as a result. To 
stop further damage in such cases, the spine needs to 
be decompressed, re-aligned, and fused. Spinal fusion 
is a normal bone-healing procedure that helps to regain 
structural stability. Although this unassisted process may 
accomplish alignment and strength, it may do so slowly 
and insufficiently, causing ongoing compression on neural 
structures.1,2 Therefore, grafts and instrumentation may 
be required to supplement the natural process of spine 
fusion. Pharmacological agents, graft expanders, and graft 
enhancers may need to be added to the process in order to 
achieve sufficient and quicker fusion.

For Pott’s spine, Albee published the first American 
account on assisted spinal fusion in 1911.3,4 Since then, 
there has been a sharp rise in spinal fusion procedures. 
The increase in annual procedures done in the USA, from 
174,223 in 1998 to 413,171 in 2008, is evidence of this.5 
Fusion is increasingly being included in all major spine 
surgeries. Time has also demonstrated the related effects 
and difficulties of spine fusion which could be reduced 

mobility, pseudoarthrosis, diseases of the neighboring 
segment, revision surgeries, rising costs, and other related 
morbidities. Continued study is necessary with an emphasis 
on appropriate case selection, risk reduction, fusion 
techniques, and postoperative spinal fusion optimization 
in order to maximize value and keep complications at a 
minimum level.

Hibbs treated a 9-year-old child with a kyphotic 
deformity at the turn of the 20th century by removing 
the spinous processes, repositioning them over the 
interspinous space to encourage fusion, and repairing the 
periosteum over the fusion mass.4 During the same time 
frame, Albee suggested using bone grafts to improve 
spinal fusion in Pott’s disease patients.3, 6 Since then, the 
procedure for fusing the spine has progressed from fusing 
it alone to fusing it with instruments and the addition of 
medication.

Pathogenesis of fusion

Normal progression of spine fusion process includes 
inflammatory response, osteogenesis, angiogenesis, and 
remodelling. The spine does not fuse in the same way 
as the other bones, with minimal callus formation, for 
unknown causes. Bone fusion takes between three and six 
months. The oxygen tension, force application trajectory, 
and motion at the location of fusion all have a significant 
impact on bone fusion. In nearly a year, the bony callus 
matures, remodels in accordance with the strain applied7, 
and completes the fusion process. 

Factors influencing fusion

Co-morbidities of patients, major modifiable risk 
factors, surgical techniques, postoperative care, the 
use of grafts and implants, as well as the type of fusion 
carried out, are just a few of the many variables that can 
affect fusion.8 To reach the ideal spinal fusion state, these 
variables should be recognized and optimized. They can 
be broadly separated into systemic and local variables. 
The specifics of each of these factors are outside the 
purview of this review and can be researched further using 
the references given.

https://orcid.org/0000-0002-4401-1022
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Systematic factors 

•	 Due to the reduced availability and delayed 
mobilization of growth factors, osteogenic factors, and 
anti-inflammatory factors in systemic diseases like 
metabolic bone diseases and immune compromised 
states like diabetes, renal failure, malignancy, and 
rheumatoid arthritis, the fusion process is slowed 
down. 9, 10

•	 Osteogenesis, overall bone mass, and bone 
metabolism are all significantly influenced by 
hormones. Therefore, changes in hormone levels, 
particularly those of growth hormone, thyroid 
hormones, parathyroid hormone, leptin, adiponectin, 
angiotensin, cortisol, erythropoietin, insulin, oxytocin, 
and calcitriol, as well as estrogen and androgen, have 
a detrimental impact on osteogenesis. 11,12, 13

•	 Low albumin levels, iron deficiency anemia, 
leucopenia and a negative nitrogen balance are 
indicators of poor nutritional condition.14, 15, 16 These 
reduce healing process, and fusion. Patients who have 
hemoglobin A1c levels under 8% have a poor chance 
of fusion.17

•	 Osteoporosis and low bone mineral density (BMD), 
which is defined as a BMD 2.5 or more below the 
young adult mean or a T-score at or below -2.5, as 
well as a lack of nutrients like calcium, iron, and 
magnesium, all essential for bone formation, can 
delay fusion.18, 19, 20, 21, 22, 23 If BMD is less than 0.3 g/
cm2, internal fixation devices ought to be avoided. 24

•	 Drugs that inhibit bone development and healing 
include corticosteroids, methotrexate, adriamycin, 
H2 blockers, and NSAIDs. Additionally, these 
medications decrease bone fusion by causing mineral 
losses that are necessary for fusion.25, 26, 27

•	 Smoking decreases bone fusion by as much as 56% 
due to the effects of nicotine.25, 28, 29, 30, 31

•	 Alcohol intake on a regular basis slows down fusion 
as well.17 

•	 Spinal fusion is delayed in obesity with greater body 
mass index (BMI).32, 33 

•	 Lack of exercise hinders union.34 
•	 Genetic factors: It has been demonstrated that 

alterations in the genes for the vitamin D receptor 
(VDR), the oestrogen receptor (ER), and collagen 
type I1 (COLIA1) affect bone fusion.35, 36

Local factors

• 	 During fusion, maintaining equilibrium is crucial, 
including sagittal balance. Sagittal balance problems 
result in deformity, pain, neurological compression 
and impairments, as well as a changed force 

distribution that slows the rate of fusion.37, 38 Sagittal 
balance and normal spine biomechanics must be 
attained in order to improve fusion and re-establish 
mechanical stability.37 

• 	 The donor graft can fuse more quickly if there is 
sufficient compressive force applied to it, which 
encourages the ingrowth of vascular branches and 
proliferating mesenchymal cells from the cancellous 
host bone into the donor graft.39 

• 	 Multiple level fusion and junctional area involvement 
have a detrimental effect on fusion and increase the 
chance of non-union.40

• 	 There are seven biological variables that affect fusion.7

○	 Sufficient local blood flow, particularly in the 
union bed vascularity.

○	 The use of grafts with good osteogenic potential 
and osteo-progenitor cell supply. 

○	 Proper receiver site setting, such as decortication, 
to enhance fusion. 

○	 If radiotherapy is administered within three 
weeks of operation, it slows fusion. 41 

• 	 Diseases of the bone, such as tumors, fibrous 
dysplasia, and Paget’s disease, inhibit union.42,43

Radiologically, instability that requires fusion is 
defined as having at least 4mm of anterio-posterior 
translation above the L1-L5 levels, 5mm of translation 
at the L5-S1 levels, or 11 degrees or more of end plate 
angular shift at a single level compared to an adjacent 
level.17

Standard radiography, dynamic radiography, radio-
stereometric analysis (RSA), CT, and MRI can all be 
used to determine the fusion state. The most popular 
way to evaluate spinal fusion is with plain static spine 
radiographs, which look for bridging trabecular bone 
across the section.44 The existence of deformity under 
physiologic load and graft resorption, implant subsidence 
or migration, implant integrity, and non-union, on the 
other hand, are signs of non-union.45 However, there are 
some concerns about the accuracy of X-rays in identifying 
small voids connected to pseudoarthrosis, especially in 
the thoracic and lumbar spine. It was found that almost 
25% of those who had been labelled as fused on plain 
radiographs had not actually fused.46

Fusion can be divided into three phases radiologically.47  
(Table 1)

With a specificity of 89% and a sensitivity of 
91%, dynamic X-rays improve the efficiency of fusion 
detection. Pseudarthrosis has been identified on lateral 
dynamic radiographs by movement of more than 2 mm 
across fused segments between spinous processes and a 
Cobb angle greater than 2°. For pseudoarthrosis, a Cobb 
angle of at least 4° had a 100% positive predictive value 
(PPV). 48, 49 
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The ability of computed tomography (CT) to clearly 
display the bridging trabecular bone, a sign of arthrodesis, 
is a unique advantage. 50 An accurate CT scan can reliably 
show a posterolateral fusion 89% of the time.51 A spinal 
segment’s motion and stability are evaluated using 
quantitative motion analysis (QMA) software both before 
and after operation 52, as well as for real-time feedback 
during fusion and instrumentation. The combination of CT 
scans and dynamic radiograph QMA, which has a positive 
predictive value (PPV) of 100% and a negative predictive 
value of 73%, is fast becoming the gold standard of 
treatment. 

By converting two-dimensional data to three-
dimensional data through radio-stereometric analysis, 53 
it is possible to calculate the three-dimensional motions 
between grafts. The invasive nature of this methodology 
makes it largely unsuitable for regular clinical use. Similar 
to that, MRI is not the best technique for evaluating union. 
It is only applicable to instances where non-metallic cages 
have been used and inter-body fusion has been assessed. 54

Indications of a spine fusion keep on evolving as we 
gain a better knowledge of natural history, spinal fusion 
biomechanics, pathophysiology, socioeconomic factors, 
patient factors, surgeon factors, resource availability, 
and regional beliefs and customs. The primary indication 
is the spinal instability, both static and dynamic. Other 
important indications include:
•	 Complex spinal canal stenosis, which is a stenosis 

of the spinal canal accompanied by grade II and 
III spondylolisthesis as well as serious, static, or 
progressive deformity and pain.55,56,57

•	 Recurrent disc herniation, typically with more than 
two recurrences and instability.58, 59

•	 Iatrogenic instability is a state of instability brought 
on directly by surgical and/or medical intervention. 
They are more likely to need revision surgery. 60,61,62 

•	 Progressive congenital spine deformities that result in 
instability and compression of the neural tissue 

•	 Kyphotic flat back condition

•	 Laminectomy of more than three levels
•	 Osteoporotic vertebral fracture not responding to 

conservative therapy 63

A scoring system has been developed by Kulkarni et 
al. to help determine who would most likely benefit from 
spinal fusion. Fusion surgery would be beneficial if the 
result is higher than 5.5. 64

Complications of fusion

Up to 25% of fusion surgeries can have 
complications.65,66 The main complications are:

1.	 Adjacent segment disease (ASD) 
Adjacent segment disease (ASD) is a significant issue 

following fusion surgeries, with a prevalence of nearly 
25% within 10 years of the initial fusion and an incidence 
of symptomatic ASD of 2.9%. 67, 68, 69 Fusion modifies the 
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spine’s biomechanics, increasing the mechanical load 
on the nearby disc space.70 Fusion can result in rapid 
disc degeneration, pain, deformity, facet arthropathy, 
and increasing stenosis with neural compression. Taken 
together, these conditions lead to ASD. This risk has been 
greatly decreased by recent developments in taking into 
account and correcting sagittal balance as well as attention 
to limiting disruption of adjacent segment tissues.71 
The result of adjacent segment disease is progressive 
deformity, especially junctional kyphosis.72

2.	 Non-union or pseudoarthrosis 
Pseudoarthrosis, also known as non-union, is a surgical 

fusion failure. It is the primary reason for revision surgery 
and has a prevalence between 5 and 42%.73,74,75 Smoking, 
patient co-morbidities, multilevel arthrodesis76,77, the use 
of medications that affect osteogenesis, and ineffective 
fusion techniques are a few of the many variables that 
delay fusion.

Other complications include

3.	 Mobility restrictions, primarily flexion and extension
4.	 Osteomyelitis of the fused section 78, 79, 80

5.	 Vascular and neural compression associated with 
displacement for transplant 81, 82

6.	 Biomechanical collapse 83

7. 	 Failed back condition and persistent pain syndrome.84

To minimize these complications, the following steps 
could be taken, 
•	 Managing the patient’s comorbid conditions, such 

as osteoporosis, diabetes, renal failures, cancer, etc., 
as well as addressing nutritional deficits and other 
issues. 

•	 Preoperative analysis of clinical features and imaging 
and planning accordingly.

•	 Correcting and maintaining biomechanics like sagittal 
alignment 85,86 and lumbar lordosis (LL) in relation to 
a patient’s-age-adjusted pelvic incidence (PI) 86, 87 

•	 Carefully choosing fusion levels88, 89, preventing 
multilevel fusion, and excluding hypermobile 
adjacent segments90 are important for maintaining 
motion segments.

•	 Avoid including adjacent degenerative levels.
•	 Use grafts that are of right sort, size, and shape. 
•	 Interbody placement of the graft completes a 

circumferential (360°) fusion, lessens stress on the 
pedicle screws, and corrects lordosis, and thus may 
improve fusion rates from 83.3% to 95.9%.91, 92, 93 

•	 The shortest plates and implants should be used. 
•	 Multiple rods that decrease motion at L5-S1 have been 

shown to reduce lumbosacral junction stress.94,95,96

•	 Stiffer rods (cobalt-chromium or steel) can reduce 
rod motion and strain and thus improve strength 
and resistance to fatigue better than less stiff rods 
(titanium). However, proximal junctional kyphosis 
(PJK) may occur more commonly with a stiffer rod. 97

•	 In-depth understandig of surgical technique, and 
preservation of critical structures like the adjacent 
annulus, cranial and caudal anterior longitudinal 
ligament (ALL), and longus coli muscle help to 
lessen fusion complications. 98, 99

•	 Meticulous prior planning with the goal of eradicating 
all sources of infection and use of suitable and 
sufficient antibiotics when necessary.

•	 Supervised physical therapy before and after surgery, 
helps to keep the graft in position, prevent stiffness or 
contractures, maintain alignment, and gradually build 
up the associated muscle strength.

Osteoporosis

Osteoporosis is a co-morbidity that remains a 
significant risk factor for unsuccessful outcome of 
assisted fusion surgery due to fusion construct failure, 
interbody cage subsidence, compression fractures and 
pseudoarthrosis 100, 101, 102. The NIH Consensus Statement 
predicted that osteoporosis would affect 12% of the 
population overall, 4.2% of males, and 18.8% of women, 
particularly after the age of 50.103, 20 Women have a 
29% lifetime risk and males have a 14% lifetime risk 
of developing an osteoporotic spine fracture.104 There is 
slowed osteogenesis and poor grip to hold the implants in 
place.105, 106, 20, 21, 22, 107 One must identify those who have 
or at risk for osteoporosis by determining metabolic bone 
health panels (vitamin D, parathyroid hormone, thyroid-
stimulating hormone, albumin, and pre-albumin levels) 
and dual-energy X-ray absorptiometry (DEXA) scans 
to evaluate bone mineral density and initiate medical 
optimization before surgery.108, 109,110,111,22 

Pharmacotherapeutic approaches, such as the 
supplementation of calcium, vitamin D3108, 112, anti-
osteoporotic medications like bisphosphonates, hormonal 
therapy, calcitonin, and teriparatide, depending on the 
severity and therapeutic reaction, are beneficial during 
the perioperative phase. These have been demonstrated to 
lower the chance of bone-implant failure while increasing 
fusion mass and rates.113, 114 The surgical approach must 
be modified to preserve the endplates,115 use longer 
constructs, concurrently use more anchors, perform 
additional interbody fusion, do under-tapping the pedicle 
and use longer, bigger, cement-augmented and growth 
factor-coated screws.116
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available in a variety of forms, including cancellous bone, 
cortical bone, and demineralized bone matrix (DBM). 
With absent donor site morbidity, equivalent outcomes, 
and increased availability, allograft has become a popular 
choice for many surgeons. 

Xenograft are the grafts obtained from other species 
and are not a popular source of bone graft.

B.	 Artificial Bone graft 
Bone graft substitutes or artificial bone grafts have 

been created to address the drawbacks of organic bone 
grafts. They can be resorbable or non-resorbable. It is 
necessary to take into account the unique mechanical, 
chemical, and immunological characteristics of each class 
of bone graft alternatives. Currently, there is no single 
substitute material that contains all the ideal properties for 
a bone graft substitute134, i.e. a three-dimensional structure 
strong enough to mimic the mechanical and biological 
properties of natural bone, allowing osteo-induction 
by having surface proteins necessary for osteoblast 
attachment and containing cells and signalling factors 
to promote osteogenesis.135 It is immunologically inert 
and prevents the formation of fibrous tissue, which can 
lead to aseptic loosening.134 Bone graft substitutes can be 
supplemented with natural bone, bone marrow aspirate, 
bone graft expanders, bone growth factors, or stem cells 
to improve fusion and achieve a fusion rate that is similar 
to autogenous bone graft. There are no complications or 
morbidities at the donor location, a shorter operating time, 
less blood loss, and a quicker and more powerful fusion. 
With in-lay grafts, there is less sinking and the height 
of the intervertebral disc is maintained. 135 The various 
artificial graft replacements include:

1.	 Metalic structural grafts
Metals are powerful in both compression and strain. 

However, they can cause an unspecific immune reaction 
and do not offer a natural substrate for cell adhesion.136 
The surface is customized and made rougher with the 
introduction of additive fabrication. Computer design 
is used to manage the layering of three-dimensional 
structures. New surface properties are being developed 
in metals to enable improved osteointegration.137 They 
are sprayed with bone growth factors and promote bone 
fusion in the metal-bone interface. Titanium metallic 
implants are the most frequently used. 

2.	 Polyetheretherketone (PEEK) structural grafts
PEEK cages are made of plastic and have rigidity 

characteristics comparable to those of normal bones. 
It is possible for radiological fusion study because it is 
radio-opaque. When used alone, PEEK causes fibrosis and 
inflammation, which may lead to implant separation. It 
results in a similar fusion when impregnated with titanium 
and bone growth stimulators.138, 139

Assisted bone fusion 

The natural fusing process is further aided and 
enhanced by assisted bone fusion, which also lessens 
complications. In order to accomplish a better, faster, and 
stronger union, bone graft substitutes, fusion enhancers, 
and implants are being used to assist fusion. Broadly, 
assisted bone fusion can be divided as either structural 
graft or fusion substrate.

1.	 During the process of fusion, structural grafts provide 
the spine with instant physical support. These include, 
a.	 Bone grafts 

i.	 Autologous bone grafts
ii.	 Allograft

b.	 Artificial Grafts

2.	 Fusion substrates are those that enhances the process 
of fusion itself. The fusion substrates can be
a.	 Autograft
b.	 Allograft
c.	 BMP (Bone morphogenic protein)
d.	 Other synthetic products

A.	 Bone grafts
Bone grafts, either on-lay or inlay, are used to achieve 

better fusion. The appropriateness of graft depends on 
its properties, namely osteo-induction, osteo-conduction, 
and osteogenesis. Among the bone grafts, autologous 
(autograft) bone graft is the time tested and gold standard 
living graft obtained directly from the index host. It has 
very high osteogenic, osteo-inductive and osteoconductive 
properties.117 At no extra cost, it is readily available from 
adjacent exposed spinous processes or either anterior or 
posterior iliac crest. 118 These have up to 100% fusion 
in instrumented spinal fusion procedures.119, 120, 121, 122 It 
became less popular due to donor site complications like 
pain, neurovascular injury, anterior–superior iliac spine 
avulsion fracture, hematoma, and infection.123, 124, 125, 126 
These limitations have led spine surgeons to look for other 
potential substitutes. 

Allograft is a poplar commercially available substitute 
of autologous graft125, 127 128 with fusion rate up to 94.3%129 
and similar clinical and radiologic out-comes.130 It is a 
cadaveric bone, sterilized to remove infectious agents and 
processed to contain only inert material. They have only 
osteoconductive properties acting as a scaffold for the 
bone from adjacent bone to grow. Allografts take longer 
time to fuse but give an immediate additional structural 
support.131 While available in large amounts, allograft 
carries a theoretical risk for disease transmission, including 
hepatitis B or C and HIV though the risk is extremely 
low: less than 1 in 1,000,000.132, 127 Allograft also has the 
potential to incite a host immune reaction.133 Allograft is 
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3.	 Ceramic structural grafts and bone graft 
substitutes
Ceramics are inert, calcium-derived materials 

and, one of the most widely studied groups of bone 
substitutes in spinal fusion. It includes bioactive glass, 
calcium phosphates, and corals. It is an attractive graft 
option as they demonstrate good biocompatibility and 
osteo-conduction.136,137 It is biodegradable by osteoclast-
mediated resorption. They have limited osteo-induction 
potential. These synthetic grafts are easily manufactured, 
have porous structure resembling cancellous bone that 
enhances ingrowth of bone while offering scaffolding 
with immediate and significant mechanical strength. They 
have limited immunogenicity and have no risk for disease 
transmission.125,127,121 The implants have demonstrated 
satisfactory outcomes and good efficacy compared to 
autologous bone grafts.140, 141 They have shown successful 
outcomes and high fusion rates even in multilevel and 
revision fusions.142, 143 

4.	 β-tricalcium phosphate (TCP) bone graft 
substitutes
β-tricalcium phosphate (β-TCP) is one the most 

used and potent synthetic bone graft substitute. It is not 
only osteoconductive, but also osteo-inductive. These 
properties, combined with its cell-mediated resorption, 
allow full bone defects regeneration. They can be moulded 
or cut, allowing great versatility in surgery, and can act as 
carriers for demineralized bone matrix (DBM) or other 
growth factors. β-TCP has shown fusion rates up to 85% 
when used alone or up to 96% when used in conjunction 
with iliac crest bone graft (ICBG).140, 144

One unique subset of ceramic bone substitutes 
is silicate substituted calcium phosphate, which have 
both osteoconductive and osteoinductive properties. Its 
osteoinductive ability originates from silicate’s negative 
charge, which attracts osteoblasts to the ceramic implant.145 
Despite their cost-effectiveness and fusion efficacy, 
ceramics are brittle and have poor resistance to tensile 
forces, making them susceptible to fracture. Additionally, 
ceramic resorption rates vary widely, with β-TCP 
absorbed over a period of months, while hydroxyapatite 
may remain latent in the body for up to a decade.127,146 
Tricalcium phosphate has been associated with soft tissue 
inflammation147 and calcium sulphate has been associated 
with serous drainage.148 

5.	 Polymers
Polymers include a vast array of materials, ranging 

from natural (collagen, chitosan, silk, hyaluronic acid, 
and peptides) to synthetic compounds (polyglycolic acid 
and polylactic acid). Naturally derived polymer scaffolds, 
such as collagen or chitosan, have the ability to resorb and 
also contain signalling factors for cell migration. They 

lack the ideal mechanical properties of bone and have to 
be integrated with other harder materials.136 

6.	 Peptide hydrogels 
Peptide hydrogels are a new bone graft substitute 

that have shown promise in the regeneration of tissues, 
with some reparative potential of cartilaginous, neuronal, 
and cardiac tissues.149 Hydrogels are synthesized from 
the molecular self-assembly of amphiphilic peptides 
into an entangled nanofiber structure, which is similar 
to the extracellular matrix of native tissues.150 Moreover, 
they can be engineered to contain epitopes such as the 
α5β1 integrin receptor that promote cell migration and 
adhesion.151, 136 Hydrogel materials can be combined 
with osteogenic cells and assembled into a matrix that 
allows osteoid formation and can be tuned to degrade 
at an appropriate time.136, 152 Hydrogels can also act as a 
delivery system that maintains and releases rhBMP-2 from 
microporous tri-calciumphosphate in controlled fashion at 
the surgical site while preventing systemic diffusion.153 
Thus, they represent a new horizon in bone grafting, 
offering the panacea of osteoinductive, osteoconductive, 
and osteogenic properties. 

C.	 Bone graft enhancers 
Bone graft enhancers can be used in conjunction with 

bone grafts and bone graft substitutes, to help with bone 
fusion. Most of these bone graft enhancers are still in trial 
form and need more experience before a firm commitment 
can be made for clinical use. The popular ones are: 

1.	 Growth Factors and Gene Therapy 
The common available growth factors include 

transforming growth factor beta (TGF-β) and platelet-
derived growth factor (PDGF). These are signalling 
proteins that induce cellular division and/or differentiation 
and bone matrix synthesis thus allowing bone growth. The 
growth factors being used are mainly derived from platelet 
rich plasma.136

Transforming growth factor beta (TGF-β)
The most widely researched member of TGF- β is 

Bone Morphogenetic Protein (BMP).154, 155 BMP was first 
extracted by Marshall Urist in 1980 from demineralized 
rabbit bone and were shown to be able to induce bone 
morphogenesis across species.156 It contains many crucial 
factors in bone formation125,127,155 Molecularly, they 
function by binding to a cell surface serine–threonine 
kinase receptor, which then transduces the signal through 
SMAD and ras/raf proteins to activate the gene expression 
necessary for bone production.157 BMPs also potentiate 
cell differentiation, causing mesenchymal cells to become 
osteoblasts and stimulate osteo-induction.157 At lower 
concentrations, BMPs induce endochondral ossification158 
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and at higher concentrations, through trans-membranous 
bone formation, it directly forms bone without a cartilage 
intermediary. BMPs have been shown to be safe and 
effective promoters of local bone healing in multiple 
animal studies159, 160, 161, 162 BMP has been shown in humans 
to increase the rate of fusion, especially in cases of 
refractory non-union.7

BMP is incorporated in carrier material like collagen 
sponge or ceramic, such as calcium phosphate, and 
delivered to the fusion site to enhance fusion. This 
vehicle both serves as an osteoconductive agent for bone 
and also improves the tissue retention of BMP. Clinical 
trials involving BMP showed improvement in Oswestry 
Disability Index (ODI) scores at 24 months compared 
with iliac crest harvest, as well as a 12% higher fusion 
rate.163 There are two preparations of BMPs available 
for clinical use: recombinant human BMP-2 (rhBMP-2) 
and rhBMP-7.164 rhBMP-2 is genetically produced 
with recombinant technology, and is highly osteo-
inductive, inducing bone formation by stimulating the 
differentiation of mesenchymal cells into chondroblasts 
and osteoblasts.165,166 It has the ability to stimulate  
patient’s own cells to make more bone and has been 
suggested as an innovative material to increase the fusion 
rate. rhBMP-2 helps with accelerated bone formation 
to achieve fusion.92 Several prospective trials have 
demonstrated equivalent fusion rates between167, 168 60 
to 100%, in instrumented fusion.169 It provides a strong 
protective effect against pseudarthrosis and is safe and 
effective for grafting, with no significant complications 
other than radiculitis.170, 171 RhBMP-2 has action on both 
osteoclast and osteoblast function, thus it enhances bone 
growth and it also induces transient bone resorption.172 
It is associated with complications like postoperative 
edema, dysphagia, cancer.173, 174 ectopic bone formation, 
heterotopic ossification, end-plate resorption175 retrograde 
ejaculation, osteolysis, post-operative radiculitis, and 
seroma formation176, 177 especially in cervical spine.178,179,180, 

181,182, 183,184 rhBMP-2 is expensive.185 However, studies 
evaluating costs have shown that the cost at 2 years 
post-operatively is actually less with BMP than ICBG 
due to decreased revision surgeries.186 BMP is available 
in several forms, including putty, sheets, and within a 
glycerol carrier.

Mesenchymal stem cells (MSCs)
Regenerative medicine has investigated the role of 

mesenchymal stem cells (MSCs), a renewable population 
of undifferentiated multipotent cells, derived from bone 
marrow or bone marrow aspirate. It can give rise to the 
various types of mature cells like muscle, bone, tendons, 
fat, and other stromal tissues.187 It was first described by 
Friedenstein.188 Bone can be derived from mesenchymal 
tissues, and therefore MSCs are clinically useful in the 
context of bone healing and bone formation. They can 

be harvested from the host with minimal morbidity and 
even be modified to secrete osteo-inductive factors, which 
are implanted on an osteoconductive scaffold.189 They 
have high potential of both osteogenic and osteoinductive 
properties within the fusion bed. Both local bone and 
distant site autologous bone grafts can serve as a source 
of stem cells at the fusion site, and many surgeons 
incorporate MSCs directly into grafting material with 
hopes of improving fusion rates. 

Gene therapy is an additional endeavour to enhance 
fusion. When BMP gene is delivered to a host cell by 
a vector, it has been shown in animal models to induce 
fusion even in non-osteoid tissue190,191. When compared 
with locally delivered BMP, the gene therapy has shown to 
increase the bioavailability of BMP by producing ongoing 
osteogenic expression locally192 Vectors to deliver the 
BMP gene range from viral (adenovirus or herpes virus) to 
nonviral (liposomes, electroporation) media. Delivery to 
a host may be either ex vivo (implantation of transfected 
cells into the host) or in vivo (injection of genes directly 
into host cells).191 Riew et al. were able to show that ex 
vivo BMP-transfected bone marrow cells, replanted in 
rabbits, were able to produce spinal fusion.193 Currently, 
gene therapy is limited by the massive immune response 
against viral vectors.194

2.	 Electrical stimulation 
Electrical stimulation is one of the therapies available 

to enhance spinal fusion. This therapy has been used 
for more than 30 years 195,196,197. Normally, when bone is 
mechanically strained, electrical potentials are generated; 
electronegative potentials are found in areas of compression 
and electropositive potentials in areas of tension. Bone is 
formed in the electro-negative regions and resorbed in the 
electro-positive regions. These electric fields may form the 
basis by which bone remodels in response to mechanical 
stimuli (Wolff’s Law).198 Three types of electrical 
stimulation are available clinically: direct current (DC), 
capacitive coupling (CC), and inductive coupling (IC) such 
as pulsed electromagnetic fields (PEMF) and combined 
magnetic fields (CMF). The mechanisms of action of each 
of the three electrical stimulation therapies differ. Broadly, 
they upregulate mRNA for growth factors199,200,201, 202,203,204 
like BMP-2, -4, -6, -7, FGF-2, and VEGF199, 200, resulting 
into upregulation of several synergistic growth factors and 
promote bone healing 205 Various electrical stimulation 
devices have been designed to deliver these fields to 
enhance bone formation.7, 205 The DC technology requires 
surgical implantation of the device whereas IC and CC 
technologies are non-invasive methods of producing 
electric fields at the fusion site. All of these technologies 
can also be utilized as adjuncts to surgical procedures using 
bone grafts. Treatment usually lasts for a minimum of 6 
months post-implantation, after which the procedure can 
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be discontinued at the discretion of the surgeon. A large 
multicentre randomized double-blind clinical studies by 
Ken WJ206, using the above mentioned methodologies of 
electrical stimulation to enhance radiographic and clinical 
spinal fusions showed a statistically significant higher 
success rate of 85 to 91.5% compared to 65 to 80.5% in the 
control groups. Electrical stimulation has been accepted 
as an established cost effective adjunct to spinal surgery, 
improving the outcomes of spinal fusion207 typically 
in high risk patients with factures such as uncontrolled 
diabetes, untreated osteoporosis or continued nicotine use. 

D. 	 Instrumentation and implants
Spinal instrumentation has become an integral part of 

spinal fusion as it allows to achieve immediate stability, 
enhance fusion, allow early mobility, correct deformities 
and maintain alignment till fusion occurs. The role of 
postoperative external arthrosis is lessening. The chemical 
composition, hydrophilicity, topographical nature and 
overall roughness of the surface of an implant play role in 
bony fusion.208,209,210,211

After placement of an implant in patients, the surface 
of the implant is coated with proteins from the blood 
and serum. This protein layer facilitates the migration 
of mesenchymal progenitor cells into the implant 
surface via the α2β1 integrin receptor, a major collagen 
type 1 receptor.209 These cells then differentiate into an 
osteoblastic lineage to form new bone. The roughness of 
implants is important for osteoblastic differentiation212 as 
more progenitor cells can get attached to the surface to 
induce bone fusion.213 

The latest achievements in implant development are:

1.	 Nanoscale surface technology 
Application of nanoscale surface technology in the 

implant and instrumentation produces roughened titanium 
and generates an osteoblastic environment.209,210,214,215 The 
increase in surface area and roughness of the implant 
surface allows host cells to attach on a molecular level via 
cellular membrane receptors. This interaction can trigger 
osteoblastic-lineage differentiation and improve fusion 
results.216 There are two primary types of manufacturing 
of Nanoscale surface technology in the production of 
spine implants, additive and subtractive. In the subtractive 
manufacturing, surface features are generated through 
the removal of material. Acid etching and grit blasting 
are two forms of subtractive manufacturing.217 Although 
subtractive manufacturing is much more commonly 
used, these techniques waste material substrate, and 
the physical process itself limits the types of designs 
that can be created. Interbody grafts are produced from 
treated pieces of titanium, and subtractive technologies 
are used to produce submicron surface textures.215 Nano-
roughened titanium surfaces induce greater differentiation 

of osteoblasts from mesenchymal stem cells, as compared 
with PEEK-treated surfaces. Roughened titanium also 
increases osteoblast maturation and produce an osteogenic 
environment that contains bone morphogenetic proteins 
(BMPs), as compared with smooth titanium and PEEK. 
Similar studies have shown that nanoengineered implants 
increase stimulation of local growth factors, including 
BMPs, VEGF, and TGF-β.215

Hardware infection can be a life-threatening sequela 
of spinal fusion surgery.218 Nanotechnology is also used to 
fight infection by coating the implants with bactericidal 
antibiotics or chemical like silver. Bacteria adhere to 
implants via the formation of a complex glycocalyx that 
protects them from antibiotics, making eradication very 
difficult.219 The surface features of an implant can decrease 
bacterial adhesion.220 Nano-roughened surfaces have been 
shown to significantly decrease rates of bacterial adhesion, 
specifically of Staphylococcus aureus, S. epidermidis, 
and Pseudomonas aeruginosa.221 Moreover, silver nano-
particles have been shown to have a bactericidal effect while 
still being biocompatible with bone. They achieve this 
through the release of silver ions from soluble complexes, 
which then generate reactive oxygen species that break 
down bacterial components. Silver nanoparticles can be 
applied to an implant via silver plasma ion immersion or 
by vapor deposition. Nanoparticles have also been shown 
to inhibit bacterial biofilm formation in animal studies. In 
particular, titanium pedicle screws coated in silver-based 
nanoparticles have been shown to be bactericidal in rabbits 
because of their release of silver ions.222,223, 219

2.	 Three-dimensional (3D) printing 
Additive manufacturing, known as three-dimensional 

(3D) printing224 involves customised layer-by-layer 
construction of complex 3D objects using computer-aided 
design software or the deposition of a material coating 
on the implant itself.217 These provide more surface area 
for adhesions of macrophages and growth factors, thus 
enhancing fusion and strong bone-implant interface 
fusion. 

Use of PEEK in implants is common, primarily 
because of its radiolucency and modulus of elasticity 
that closely resembles that of native bone. However, it 
produces fibrous encapsulation because of its induction 
of an inflammatory environment, and this can result in 
nonunion.211 Porous surface may also be applied to PEEK 
by extruding it through a bed of sodium chloride crystals, 
which has been shown to improve osteoconductivity but 
only in the presence of osteogenic mediators.225,226 To 
overcome this limitation, PEEK implants are sprayed 
with titanium spray (post-processing) which improves 
the surface properties of PEEK, but this method has been 
associated with increased generation of wear debris. 
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3.	 Bio-absorbable implants
Bioabsorbable interbody fusion is a new addition 

in the science of fusion where the graft is resorbed over 
time and replaced by host bone. The issue is the ability 
to preserve and maintain postoperative distraction, 
biomechanical stability and histological characteristics 
of intervertebral bone matrix formation. These implants 
create the extracellular matrix of bone.227 They generate 
an inflammatory response and have poor osteo-
conductivity.228 To improve the osteo-conductivity, 
nano-sized β-tricalcium phosphate (β-TCP) has been 
incorporated into PLA cages.229 Poly (D,L-Lactide-
co-Glycolide) (PLDLLA) Cage and Polymer Calcium 
phosphate-composite (PCC) Cage have been used in 
animal models as absorbable intervertebral implants and 
have given promising results.230

4.	 Self-Assembly of Peptide Amphiphiles
This is a new addition of bio-nanotechnology where 

peptide amphiphiles, a class of molecules that combine 
the structural features of amphiphilic surfactants with the 
functions of bioactive peptides, assemble into a variety 
of nanostructures. A specific type of peptide amphiphiles 
are known to self-assemble into one-dimensional 
(1D) nanostructures under physiological conditions, 
predominantly nanofibers with a cylindrical geometry. 
The resultant nanostructures could be highly bioactive 
and are of great interest in many biomedical applications, 
including tissue engineering, regenerative medicine and 
drug delivery.He B 2014 Reversible intramolecular disulfide 
bonds allow for cross-linking of nanofibers, resulting 
in a robust network that directs the mineralization of 
hydroxyapatite. The alignment of hydroxyapatite in the 
resulting composite material was found to be identical to 
the alignment observed between hydroxyapatite crystals 
and collagen fibrils in bone.231 Using this foundation, 
phosphorylated serine segments within the PA molecules 
were incorporated, which allows for the generation of a 
self-supporting, bioactive gel matrix that mimics bone 
sialoprotein, further augmenting mineralization.151

5.	 Artificial intelligence (AI) and machine learning 
(ML)
Access to big, high fidelity clinical databases and the 

development of machine learning algorithms are making 
analysis and prediction a reality today. New technology 
using the newest advancements in machine learning 
and predictive analytics may offer significant clinical 
advantages in determining unique goals of correction 
to reduce the rates of pseudarthrosis, revision surgery, 
and proximal junctional failure.232 Development of a 
validated computer-based preoperative predictive model 
for pseudarthrosis with 91% accuracy in adult spinal 
deformity is a step forward to decrease non-union. Clinical 

oversight of “black box” algorithms to determine real-
world practical application and interpretations in clinical 
settings is one of the limitations of machine learning. 
These tools hold the potential of aiding with improved 
diagnosis, surgical planning and risk optimization.

Conclusions 

Spinal fusion has become an integral part of spine 
surgery. The evolution of fusion over the last 100 years 
has dramatically increased the safety and efficacy of this 
treatment. Much of this was driven by the advancement in 
instrumented and assisted fusion. Improvements in fusion 
rates, faster recovery times and reduction in complications 
are also due to better patient selection and peri-operative 
optimization of modifiable risk factors. Advances in 
material and design of fixation instrumentations, nanoscale 
surface technologies of structural grafts as well as use of 
biological agents for supporting and accelerating fusion 
are contributing to highly reliable rates of arthrodesis. 
All these advancement has made bone fusion almost 
a guaranteed event with very low complication rates. 
Artificial intelligence and machine learning aims to make 
fusion a more predictive procedure with a better prognosis 
helping patients to get a better quality of life.233 These 
technological advancement and results come with a huge 
financial burden to the community and the patients, and 
it is the surgeons’ added responsibility to strike a good 
balance. 
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