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AbstractThis study is based on formulation of a new probability model havingfour parameters. Model parameters estimated via Maximum Likelihood,Least Squares, and Cramer–Von Mises methods are utilized. Somestatistical properties like reliability function, hazard rate function,quantile functions are studied. Applicability of the model is tested usinga real data set. Box plot and TTT plots are used to explain the nature ofthe data. For model validation, Q-Q plot, P-P plots as well as informationcriteria values such as Akaike Information criteria, BayesianInformation criteria, Corrected Akaike information criteria and Hannan-Quinn information criterion values are obtained. For testing thegoodness of fit of the model and the model taken for comparison,Kolmogorov- Smirnov, Cramer Von-Mises, and Anderson darling test areapplied. To study of the performance of MLEs, Monte-Carlo simulation ispresented. All the calculations are performed using R programminglanguage.
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Introduction

Research needs data and analysis of the data used. Probability distribution is one of the tools for analyzing the
data. There are many data in study that cannot be clearly explained using the classical probability models. Over
the past decades, numerous new probability models have been introduced in literature for enhanced precision.
In literature we can find numerous techniques of getting new probability model. Some techniques are using
family of distributions, adding some extra parameters and modifying the existing probability models. There are
various exponentiated models such as the exponentiated generalized class of distributions (Cordeiro & Ortega,
2013), exponentiated Weibull distribution (Nadarajah et al., 2013) and Exponentiated distributions (Al-Hussaini
& Ahsanullah, 2015) etc. A modified Weibull distribution by (Lai, et al., 2003), Beta modified distribution given by
(Silva et al., 2010) and a new modified Weibull distribution by (Almalki & Yuan, 2013) are modified probability
models.  Weibull-H class (Cordeiro et al., 2017) and the exponential model's extension (Nadarajah & Haghighi,
2011) are used for formulating many new probability models.

In recent years, generalization is one of the important techniques of formulating new probability models.
Weibull generalized family of distributions given by (Bourguignon et al., 2014) is used for formulation of
probability models. The CDF and PDF of the Weibull generalized family of distribution are given below:
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Where, ( ; )H x ,   1
,

 
H x and ( : )h x are the CDF, reliability function and PDF of the base line distribution

respectively for x≥0, (β, θ)>0. Taking inverted exponential or inverse exponential (IE), as base distribution
Oguntunde (2017, July) formulated the Weibull- inverted exponential distribution.

/( ; ) xH x e   (1.3)

We can define ( ; )H x  as,

/( ; ) 1 xH x e    (1.4)

Also define function,

/
/

/

( ; )
  =( 1)

( ; ) 1

x
x

x

H x e
e

H x e

 
 











  
   

      
(1.5)

Substituting equation (1.5) in equation (1.1) and (1.2), we can get the CDF and PDF of the Weibull inverted
exponential distribution as,
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In this article, an extra non negative parameter is taken as exponent of the Weibull inverted exponential
distribution to formulate a new distribution Exponentiated Weibull Inverted Exponential (EWIE) distribution. Let λ
is non- negative constant. Taking of exponentiation to the CDF ( ; , , )  G x of the Weibull inverted exponential

distribution results proposed model as the Exponentiated Weibull inverted exponential distribution with CDF
and PDF defined by,
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Properties of model

Reliability function

Reliability function of the defined model is given as,
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Hazard rate function

Hazard rate function of the proposed model is defined by:
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The probability density function and the hazard rate function of the proposed model EWIE is displayed in Figure
1.

Figure 1
Probability density function (left) and hazard rate function (right) of the EWIE

Density curve is of different shape for different values of the parameters showing that proposed model is
flexible. The hazard rate curve is increasing – decreasing and of inverted bathtub shape.

Cumulative hazard rate function

The cumulative hazard rate function H(x) is given as
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Quantile function
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Putting u = ½, we can get the median of the proposed model as:
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Random deviate generation

Random deviate generation of the model is given by:

      1
1/

1/ln 1 1/ ln 1


 


  

     
    

x u ; 0 < u < 1 (2.6)

Asymptotic properties of the Model
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 so modal value of the proposed model will exist.

Skewness and kurtosis

Skewness pertains to data consistency. We applied Bowley’s skewness coefficient (Al-saiary et al., 2019) using
quantiles for analysis as:
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The calculation of Octiles Kurtosis coefficients from (Moors, 1998) and (Al-saiary et al., 2019) involves the
following relation.
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u

Parameter estimation techniques

Parameters can be estimated applying different methods. We have applied following methods.

Estimation using maximum likelihood (MLE)

Defining the log likelihood function for the proposed model in (1.9). Let  1  , ,  nx x x be a random sample of

size ‘n’ from MEIE then the log likelihood function can be written as:
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(3.1)

After differentiating (3.1) with respect to α, β, θ and λ, we can get the first order and second order partial
derivatives of log likelihood function.
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Solving above first order derivatives to zero, parameters of the proposed model can be estimated. Solution of
above equation is not possible so computer programming can be used. Let ˆ ˆ ˆˆ ˆ( , , , )     and ( , , , )     ,
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Variance covariance matrix is:
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Estimation using least-square (LSE)

Let
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Minimizing function (3.4), parameters of proposed model EWIE can be obtained. For minimization of (3.4) first
order and second order partial derivatives can be obtained by differentiating function A with respect to
unknown parameters.

Parameters can be also obtained by weighted LSE minimizing the function D in (3.5)
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Using the CDF of the order statistics and weight wi in above expression with respect to α, β, θ and λ
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Cramer-Von-Mises (CVM) method

Using this method, parameters α, β, θ and λ can be estimated by minimizing the function (3.6)
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Differentiating (3.5) with respect to α, β, θ and λ, we can get the first and second order partial derivatives of

function Z and solving = 0, 0, 0and = 0
Z Z Z Z

   
   

 
   

, CVM estimates can be obtained.

Applications

Data set
The data set is number of major earthquakes (7.0+) from 1900 to 2018 are provided below
(https://earthquake.usgs.gov/).

13, 14, 8, 10, 16, 26, 32, 27, 18, 32, 36, 24, 22, 23, 22, 18,25, 21, 21, 14,8,11,14, 23, 18, 17, 19, 20, 22, 19, 13, 26, 13,
14, 22, 24, 21, 22, 26, 21, 23, 24, 27, 41, 31, 27, 35, 26, 28, 36, 39, 21, 17, 22, 17, 19, 15, 34, 10, 15, 22, 18, 15, 20,
15, 22, 19, 16, 30, 27, 29, 23, 20, 16, 21, 21, 25, 16, 18, 15, 18, 14, 10, 15, 8,15, 6, 11, 8, 7, 18, 17, 13, 12, 13, 20, 15,
16, 12, 18, 15, 16, 13, 15, 16, 11, 11, 18, 12, 17, 24, 20, 16, 19, 12, 19, 16, 7, 17
Exploratory data analysis
Exploratory data analysis reveals inherent patterns and extracts key data variables. Figure 2 illustrates the box
plot and Total Time Test (TTT) plot for the provided data. TTT validates the data's suitability for a particular
probability model. The subsequent expression represents the empirical TTT plot.

( )( : ) : ( : )
1

1

1

     
 

 
 
  
  



 r
T y n r y y

n

n n

i n i n i n
i i

Where, r = 1, 2... n and ( 1, 2, ..., )( : ) y i ri n be sample order statistics . Since TTT plot of data is concave

indicating that increasing the hazard rate shape of the proposed distribution.
Figure 2
Boxplot (left panel) and TTT plot (right Plot)
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Table 1
Summary Statistics

Minimum Q1 Median Mean Q3 SD Skewness Kurtosis Max.
6.00 15.00 18.00 19.08 22.50 6.993 0.728 3.570 41

The dataset exhibits positive skewness and non-normal shape.

Parameter estimation

Due to the nonlinearity of partial derivatives, parameter estimation via analytical methods is infeasible. Instead,
the R software's optim() function is employed for estimation (R Core Team, 2020). Table 2 presents MLE, along
with standard error of estimate (SE), for the parameters.

Table 2
Estimated Parameters Using MLE, LSE and, CVME

Parameters MLE LSE CVM
Alpha 0.8917 1.7057 0.5423
Beta 0.0159 0.0722 0.0060
Theta 1.5723 1.4302 1.6256

Lambda 3.6520 4.7294 3.8285

Different graphical plots like histogram and the fitted density curve, Q-Q plot, empirical versus theoretical cdf
and P-P plot of the proposed model EWIE is displayed in Figure 3.

Figure 3
Histogram vs fitted pdf, Q-Q plot, empirical versus theoretical cdf and P-P plot of EWIE
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For testing the applicability, three previously defined probability models are considered. Model considered are:
Logistic inverse exponential (LIE) distribution (Chaudhary et al., 2020), Modified Weibull (MW) distribution (Lai et
al., 2003), and Weibull Extension Model (Tang et al., 2003).

Table 3 displays the parameter estimate by MLE method for models taken in consideration.

Table 3
Estimated parameters by using MLE
Model Alpha Beta Theta Lambda
EWIE 0.8917(0.8896) 0.0159(0.0088) 1.5723(0.4117) 3.6520(2.4549)
LIE 3.3079(0.2560) - - 12.3560(0.4217)
WE 115.9452(89.7898) 2.8848(0.1999) - 1.1221(1.7360)
MW 0.0022(0.0002) 2.0001(0.1040) - 0.0029(0.0114)

For testing the validity of the model different information criteria such as Akaike information criterion (AIC),
Corrected Akaike information criterion (CAIC), Bayesian information criterion (BIC) and Hannan-Quinn
information criterion (HQIC), are computed. The findings are displayed in Table 4. Finding shows that the
proposed model EWIE fits data better compared to the competing models.

Table 4
Log-likelihood (LL), AIC, BIC, CAIC, and HQIC.
Model LL AIC BIC CAIC HQIC

EWIE -394.2792 796.5584 807.6749 796.9092 801.0724

LIE -397.9190 799.8379 805.3962 799.9414 802.0949

WE -398.3256 802.6512 810.9886 802.8599 806.0368

MW -409.0469 824.0938 832.4311 824.3025 827.4793

Kolmogorov-Smirnov (KS), Cramer-Von Mises (W) statistics and, Anderson-Darling (A2) for the proposed model
as well as the competing models are tabulated in Table 5.

Table 5
KS, W and A2 for goodness of fit test
Model KS W A2

EWIE 0.0607(0.7738) 0.0450(0.9066) 0.3037(0.9352)

LIE 0.0633(0.7262) 0.0655(0.7803) 0.6534(0.5986)

WE 0.0872(0.3260) 0.1646(0.3484) 1.0410(0.3363)

MW 0.1640(0.0033) 0.7805(0.0080) 4.7274(0.0039)

Lower values of test statistics and greater values of p show that the model fits well to the considered data set
compared to the competing models.

Simulation study

To study of the performance of MLEs, Monte-Carlo simulation is presented. For study tool bias is used. Here,
1000 times repetition is done for generating 20 samples of size n= (50, 100, 150, 200, 250, 300, 350, 400, 450,
500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000) taking the parameter set as α=5, β = 4, θ= 2, λ=3. Table 6
contains the average values, and biases.
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Table 6
Mean estimates and mean bias

n Estimates Bias
α=5 β = 4 θ= 2 λ=3 α=5 β = 4 θ= 2 λ=3

50 5.6506 6.5240 2.2922 6.2217 0.6506 2.5240 0.2922 3.2217

100 5.3035 6.4036 2.1134 4.1239 0.3035 2.4036 0.1134 1.1239

150 5.1741 6.1207 2.0585 3.7674 0.1741 2.1207 0.0585 0.7674

200 5.2838 6.3612 2.0327 3.5307 0.2838 2.3612 0.0327 0.5307

250 5.3008 6.3070 2.0384 3.3662 0.3008 2.3070 0.0384 0.3662

300 5.3034 6.1041 2.0213 3.3295 0.3034 2.1041 0.0213 0.3295

350 5.2752 5.9664 2.0146 3.2787 0.2752 1.9664 0.0146 0.2787

400 5.1974 5.5796 2.0145 3.2485 0.1974 1.5796 0.0145 0.2485

450 5.2586 5.5844 2.0084 3.1960 0.0259 1.5844 0.0084 0.1960

500 5.2177 5.5249 2.0071 3.1865 0.2177 1.5249 0.0071 0.1865

550 5.2139 5.4466 2.0013 3.1607 0.2139 1.4466 0.0012 0.1607

600 5.2308 5.3867 1.9958 3.1588 0.2308 1.3867 -0.0042 0.1587

650 5.2402 5.3339 1.9920 3.1512 0.2402 0.0080 1.3339 0.1512

700 5.1796 5.1304 1.9954 3.1467 0.1796 0.0046 1.1304 0.1467

750 5.1035 4.8023 2.0022 3.1476 0.1035 0.8023 0.0022 0.1476

800 5.1682 4.9904 1.9968 3.1125 0.1682 0.0032 0.9904 0.1125

850 5.1859 4.9546 1.9956 3.0959 0.1859 0.0044 0.9546 0.0959

900 5.0965 4.6786 1.9995 3.1168 0.09645 0.0005 0.6786 0.1168

950 5.1554 4.8857 1.9960 3.0938 0.1554 0.0040 0.8857 0.0938

1000 5.1296 4.7216 1.9995 3.0882 0.1296 0.0004.81 0.7216 0.0882

Conclusion

In this study a four parameters continuous probability model called Exponentiated Weibull Inverted exponential

distribution is formulated. Different statistical properties such as hazard rate function, random deviate

generation and quantile functions are studied. Parameters of the model are estimated using three methods,

MLE, CVM and LSE. Applicability of the model is tested by taking a real data set. For validity testing, different

information criteria like AIC, BIC, CAIC and HQIC are obtained. Goodness of fit of the model is tested by finding

Kolmogrov-Smirnov, Cramer- von Mises and Anderson-Darling test statistics values along with corresponding p-

values. To study of the performance of MLEs, Monte-Carlo simulation is presented.
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