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Abstract 
In this paper, we have considered frequentist parameter estimation of two-
parameter exponentiated log-logistic distribution based on a complete sample. 
The parameters are estimated using a likelihood-based classical inferential 
procedure. This study has tried to compute MLEs along with their asymptotic 
confidence interval, contour plot and standard errors. The K-S test statistic, 
Quantile-Quantile (QQ) and Probability-Probability (PP) plots are used to check 
the validity of the model. All the computations are performed in R software. A 
real data set is considered for illustration of the purposed inferential procedures.
Keywords – Exploratory data analysis, Contour plot, Exponentiated Log-logistic 
distribution, Maximum likelihood estimation, Model validation.

Introduction
The log-logistic distribution is very useful in survival analysis since it has a nonmonotonic hazard 

function, (Bennett, 1983) and (Tadikamalla and Johnson, 1982). When dealing with censored data, which 
makes this distribution more convenient is that the shape of this distribution has a more manageable form 
than that of the log-normal, even though the shape is similar. (Srivastava and Shukla, 2008) studied the 
log-logistic distribution as a step-stress model. (Balakrishnan and Malik, 1987) gave the moments of order 
statistics from the truncated log-logistic distribution. This distribution has been also studied by Howlader 
and Weiss, (1992). Lawless, (2003), Lee and Wang, (2003) and Murthy et al., (2004) provide an excellent 
review for the log-logistic distribution.  

 Based on modifications such as adding parameters to the existing models, new classes of models 
have been proffered in recent years. Adding one or more parameters to distribution makes it richer and 
more flexible for modeling data. 

 There are different ways for adding a parameter(s) to a distribution. (Marshall and 
Olkin (1997, 2007) added one positive parameter to a given (general) survival function. 
As described by Marshall and Olkin, (2007) and Klugman et al., (2012), an exponentiated 
distribution can be easily constructed. It is based on the observation that by raising any baseline 
Cumulative Distribution Function (CDF) ( )baselineF x  to arbitrary power 0α > , a new CDF 

( )( ) ( ) ; 0baselineF x F x α α= >
  (1.1)

is obtained with the additional parameterα . 
This idea led several authors to consider extensions from usual survival distributions. The 

exponentiated Weibull distribution was considered by  (Mudholkar and Srivastava, 1993) as a generalization 
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of the Weibull distribution.  The reliability test plan for exponentiated log-logistic distribution was studied 
by (Rosaiah, et al. (2006, 2007)). The Kumaraswamy-log-logistic distribution was introduced by (Santana 
et al., 2012) which includes exponentiated log-logistic distribution. Chaudhary and Kumar (2014) obtained 
the maximum likelihood and Bayes estimators for the parameters, the posterior predictive check procedure 
for evaluating the model fit and the reliability function of the three-parameter exponentiated log-logistic 
distribution using Markov Chain Monte Carlo simulation method.  

The CDF of the log-logistic distribution is given by 

( ) ( )
( )

( ) 0 0
1

LL
x /

F x; , ; , , x
x /

β

β
λ

β λ β λ
λ

= > >
+

 (1.2)

 where 0β > is the shape and 0λ >  is the scale parameter. 
 The CDF of the exponentiated log-logistic(ELL) distribution is defined by raising ( )LLF x to the 

power ofα , namely ( ) ( )( )LLF x F x α
= . The distribution function of ELL distribution with three parameters 
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Where shape parameters are 0α > and 0β > and the scale parameter is 0λ > . 
The model reduces to the log-logistic distribution when 1α = . 1λ =  can be assumed without any loss of 
generality since λ it is the scale parameter. When 1λ =  three-parameter ELL distribution reduces to two-
parameter ELL distribution and we shall denote it as ( , )ELL α β . 

The rest of the article is arranged as given. The model and its features are introduced in Section 
2. The real data set and its exploratory data analysis, maximum likelihood estimation (MLE) and model 
validation are described in Section 3.Conclusions are given in Section 4.
The Exponentiated Log-logistic Model 
 The Cumulative Distribution Function (CDF) of two-parameter exponentiated log-logistic (ELL) 
distribution is given by
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where the shape parameters are 0α >  and 0β > . 
And the corresponding Probability Density Function (PDF) with shape parameters 0α > and 0β >

is given by
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The reliability/survival function is given by
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Figure 1    The probability density function (Left panel); The hazard function (Right panel) of 
( , )ELL α β distribution for 1α =  and different values of β .

The hazard rate function with shape parameters 0α > and 0β >  is
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The quantile function is given by

( ) 11 1 0 1
//

px p ; p
βα −−= − < < . (2.5)

The random deviate can be generated from ( , )ELL α β  by  

     ( ) 11 1 0 1
//x u ; u
βα −−= − < <                (2.6)

where u have the ( )0 1U , distribution. 

The thr  moment  and mode are  given by 

( )
1

1
'
r

r r ; rαµ α β β
α β β

   
= Γ + Γ − − < <   Γ +    

   (2.7)           

and
11Mode 1

1

/
;

βαβ αβ
β

 −
= ≥ + 

.

Some of the typical ( , )ELL α β  density functions for different values of β and 1α = are depicted in 
Figure 1 (left panel). It is evident from Figure 1 that the density function of the ELL distribution can take 
different shapes. Figure 1(right panel) exhibits the different hazard rate functions of ( , )ELL α β  distribution.

Data, Maximum likelihood estimation and Model validation
 The following real data set is considered for illustration of the proposed methodology. The data 
given below represent active repair times (in hours) for 46 repair times of an airborne communication 
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transceiver. (Chhikara and Folks, 1977) fitted a two-parameter inverse Gaussian distribution. The data are 
presented below:

0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 
1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 
7.5, 8.8, 9.0, 10.3, 22.0, 24.5

Exploratory data analysis (EDA)
Exploratory data analysis (EDA) provides a variety of graphical tools for quickly summarizing and 

gaining insight into a set of data (Tukey, 1977). It allows data to speak for themselves, without making 
assumptions and conducting formal analyses.  The descriptive statistical methods quantitatively describe 
the main features of data. 

 

Table -1 Summary statistics

Minimum 0.200
First Quartile (Q1) 0.800
Median 1.750
Mean 3.607
Third Quartile (Q3) 4.375
Maximum 24.500
Kurtosis 8.295
Skewness 2.795

                         Figure 2 Boxplot

The main data features are (i) measures of central tendency(e.g. mean and median); (ii) measures of 
variability (e.g., standard deviation)  and  (iii) measures of relative standing (e.g.,quantiles). 
The descriptive statistics for the above data set are presented in Table 1. We have 
plotted the boxplot in Figure 2, which shows that the data set contains three "outliers".     
 The estimation of the parameter of the proposed model is obtained by the method of maximum 
likelihood(ML) estimation. 

Maximum likelihood estimation (MLE) and asymptotic confidence intervals
 In this section, we briefly discuss the maximum likelihood estimators (MLE’s) of the two-parameter 

ELL distribution and discuss their asymptotic properties to obtain approximate confidence intervals based 
on MLE’s.

Let a random sample ( )1 nx x , . . . , x=  of size n can be taken from ( )ELL ,α β , then the log-

likelihood function ( ,  )α β  can be written as;  

  ( ) ( ) ( )
1 1 1

1 1
n n n

ii i
i i i

( , ) nlog nlog log x log x log xβ βα β α β α α
= = =

= + + − − + +∑ ∑ ∑  .  (4.1)

Therefore, in order to obtain the MLE’s of α  and β , we can maximize (4.1) directly with respect to α  and β  
or the following two non-linear equations can be solved using iteration method e.g. Newton-Raphson method  
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Let us denote the parameter vector by ( ),θ α β= and the corresponding MLE of θ  as ( )ˆ ˆˆ ,θ α β= , 
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then the asymptotic normality results in

    ( ) ( )( )( )1
2 0ˆ N , Iθ θ θ −

− →  (4.2)

where ( )I θ  is the Fisher’s information matrix given by
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In practice, as we do not knowθ , it is useless that the MLE has asymptotic variance ( )( ) 1I θ − .  Hence, 
the asymptotic variance can be approximated by "plugging in" the estimated value of the parameters.  The 
common procedure is to use the observed Fisher information matrix ( )ˆO θ  (as an estimate of the information 
matrix ( )I θ ) given by
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where H is the Hessian matrix,  ( ),θ α β=  and ( )ˆ ˆˆ ,θ α β= . To maximize the likelihood, the Newton-
Raphson algorithm produces the observed information matrix. Therefore, the variance-covariance matrix 
is given by

( )( ) ( ) ( )
( ) ( )

1
ˆ

ˆˆ ˆvar cov , 
H

ˆ ˆˆcov , varθ θ

α α β
θ

β α β

−

=

 
 − =
  
 

. (4.5)

Hence, approximate 100(1 )%γ−  confidence intervals for α  and β can be constructed from the asymp-
totic normality of MLEs as

    /2ˆ ˆ( )z varγα α±    and /2
ˆ ˆ( )z varγβ β±       (4.6)

where /2zγ  is the upper percentile of standard normal variate.

Computation of MLE
 We have started the iterative procedure by maximizing the log-likelihood function given 

in the equation (4.1) directly with an initial guess for 0.5α = 0.5β = and, far away from the 
solution. We have used optim( ) function in R, (R Development Core Team, 2013) and (Rizzo, 
2008), with the option Newton-Raphson method. The iterative process stopped only after 26 
iterations. We obtain ˆ 1.838α =  and ˆ 1.3297β = and the corresponding log-likelihood value is

ˆˆ( , ) 100.474α β = − .  We have plotted the contour plot ( , )α β in Figure 3, the (+) indicates the MLE.  
 The 95% confidence interval is computed using (4.5) and (4.6). Table 2 shows the ML estimates, 
standard error (SE)  and  95 % Confidence Intervals for the parameters alpha and beta.
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The Akaike information criterion (AIC) and 
Bayesian information criterion (BIC) are defined as

ˆAIC 2 ( ) 2 pθ= − +   and  

( )BIC 2 ˆ( ) p log nθ= − +

where ˆ ˆˆ( , )θ α β= is the ML estimate of ( , )θ α β=  
and p is the number of parameters estimated in the model. 
The smaller the value of AIC and BIC, the better will be 
the model. The values of the information measures are 
AIC= 204.9 and BIC = 208.6, respectively.   

Table 2  MLE, standard error and 95% confidence 
interval

Parameter MLE Std. Error 95% Confidence Interval
alpha 1.8381 0.27185 (1.3053, 2.3709)
beta 1.3297 0.15382 (1.0282, 1.6312)

Model Validation
Once the parameters have been obtained by the method of maximum likelihood, the Kolmogorov-

Smirnov (KS) distance between the fitted distribution function and the empirical distribution function is 
used to check the validity of the model.

The graphical methods Quantile-Quantile (QQ) and Probability–Probability (PP) plots are used 
for the suitability of the model under consideration. The value of the K-S test statistic is 0.0899 and the 
corresponding p-value is given by 0.8514. The higher p-value clearly indicates that ELL distribution can be 
used to analyze the given data set, and we have also plotted the empirical distribution function and the fitted 
distribution function in Figure 4. It is clear that the estimated ELL distribution provides a reasonable fit to 
the given data, (Kumar and Ligges, 2011).

Further support for this finding can be obtained 
by inspecting the probability-probability (P–P) and 
quantile-quantile (Q–Q) plots. The P-P plot shows the 
empirical and theoretical distribution functions. The 
estimated versus the observed quantiles can be shown 
by the Q-Q plot. As can be seen from the straight line 
pattern in Figure 5 the ELL fits the data well.

Figure 4   The empirical and fitted distribution function.
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Figure 5 Probability-Probability (PP) plot (left panel); Quantile-Quantile (QQ) plot (right panel) using 
MLEs as estimate 

Conclusions
 We have discussed frequentist inferential procedures in order to compute parameters of 

exponentiated log-logistic distribution by the method of maximum likelihood (ML) estimation. We have 
obtained the approximate confidence intervals for parameters and contour plot of the log-likelihood 
function. We have used exploratory data analysis techniques and the descriptive statistical methods 
which describe the main features of data. The K-S test statistic, the graphical methods Q-Q and P-P 
plots are used for the suitability of the model under consideration. The value of K-S test statistic, Q-Q, 
and P-P plots show that the two-parameter exponentiated log-logistic distribution fits the data well. 
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