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ABSTRACT

The sequence space bv(u,p) has been defined and the classes (bv(u,p): L), (bv(u,p): c) and (bv(u, p): cy) of
infinite matrices have been characterized by Basar, Altay and Mursaleen ( see, [2] ). The main purposes of the
present paper is to characterize the classes(bv(u,p): f..), (bv(u,p): f) and(bv(u,p): fy), where f,,, f and f;
denotes the spaces of almost bounded sequences, almost convergent sequences and almost convergent null
sequences, respectively, with real or complex terms.
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1. INTRODUCTION, BACKGROUND AND PRELIMINARIES

A sequence space is defined to be a linear space with real or complex sequences. Throughout
the paper N, R and C denotes the set of non-negative integers, the set of real numbers and the
set of complex numbers, respectively. Let ¢, ¢ and c, respectively be Banach spaces of
bounded, convergent and null sequences x = {x, };—, normed by [|x|| = sup,>o|x(n)|; also,
by cs we denote the sequence of all convergent series(see, [7]).

Let X and Y be two non-empty subsets of the space w of real or complex sequences. Let

A =(ay),(n, k € N), be an infinite matrix of real or complex numbers. We write (Ax), =
A, (x) =Xy apx, . Then Ax = {A,(x)} is called the A-transform of x, whenever 4, (x) =
Yk QX converges for each n € N. We write lim,, Ax = lim, 4, (x). If x € X implies
Ax €Y, we say that A defines a (matrix) transformation from X into Y and we denote it by
A:X = Y. By (X:Y), we mean the class of all matrices A such that A: X —» Y.

Let D denote the shift operator on w, that is , Dx = {x(n)}_;, D?x = {x(n)}7_, and so on.
Obviously, D is a bounded linear operator on [, onto itself. A Banach limit L is a non-negative
linear functional on [, such that L is invariant under the shift operator that is, L(Sx) = L(x)
and that L(e) =1, where e ={1,1,...} (see, [1]). A sequence space is said to be almost
convergent (see, [3]) to the generalized limit « if all Banach limits of x are a. We denote the
set of almost convergent sequences by f. It was proved by Lorentz (see, [3]) that

f={x€ly, :lim, 1, (x) = a,uniformly in n},
where, T (X) = m%rl 720X 4n» T-1, = 0and a = f-limi.
Nanda [6] has defined a new set of sequences f,,as follows:

foo =1{x € loo & limyy [Ty, (x)] < o0}

89


mailto:neyaznit@yahoo.co.in

KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY
VOL. 8, No. Il, DECEMBER, 2012, pp 89-92

We call £, the set of all almost bounded sequences.

We denote by X#, the S-dual of a sequence space X and mean the set of all these
sequences x = (x;) such that xy = (x;y,) € cs forall y = (y;) € X.

The approach of constructing a new sequence space by means of matrix domain of a particular
limitation method has been studied by several authors viz., ( [2, 4, 5] ).

The sequence space bv(u,p) has been defined and the various classes (bv(u,p): o)
(bv(u,p):c) and (bv(u,p):cy) have been characterized (see, [2]). In the present paper, we
characterize the classes (bv(u,p): f»), (bv(u,p): f) and (bv(u,p): fy) , where u = (u) is a
sequence such that u;, # 0 for all k € N.

The space bv(u, p) is defined (see, [2]) as
bv(u,p) ={x = () € w: Xylupdxy [Pk < o0},
where, Ax), = x5, — Axp_q.

2. MAIN RESULTS
Define the sequence y = (y,) which will be used as the A“-transform of a sequence x =
(xk), i. e.,

Vi = ukAxk ; kK €N, (21)

For brevity in notation, we write

1
tmn (X) = m14j=0 Apyj(x) =X aln, k, m)xy,

1
where , a(n,k,m) = EZ}’;O antji (M k,mé€N)
Also, a(n, k,m) = [M] :(n, k, m € N).
k
Now, we give the following lemmas which will be needed in proving the main
Theorems.

Lemma 2.1 [2] : Define the sets D; (p)and D, (p) as follows:
Di(p) = {a = (@) € @ : sup, B [Ty L

Pk
<),

P

n 4 p-1

=k B | <00}.
k

D;(p) = Up>1 {a = (ay) € w : sup, Xk—o

Then, [bv(u,p)]?P =D;(p)Ncs; (0<p, <1)
and [bv(u, p)1F = D,(p) Ncs; (1 < py < ).

j=

Lemma 2.2 [6]: f C f..
We consider only the case 1 < p;, < M < oo and the case 0 < p, <1 may be
proved in a similar fashion.

Theorem 2.3: (a) Let 1 < p, < M < oo forevery k € N. Then A € (bv(u,p): f.,) if and only
if

Supn,m Zkla(nl ki m)B_llp;{ < 5 (22)

and {a. } € Dy(p) Ncs. (2.3)
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(b) Let 0 < p, < 1foreveryk € N. Then A € (bv(u,p): f,,) if and only if
Supy,m 2kla(n, k, m)|Pk < oo (2.4)
and {a.} € Di(p) Necs. (2.5)

Proof : Sufficiency: Suppose the conditions holds and x € bv(u,p).Using the inequality
which holds for any € > 0 and any two complex numbers a, b
lab| < C{|laC~ 1|9 + bP},
where, p >1andp~ ! + g1 =1 (see [3]), we have

|t (A0)| = Xk a(n, k,m)x,e| = | Xy a(n, k, m)yy|
< % B [1atn k,m)B1|Pe + |y, [P
Now, taking sup over m,n on both sides to the above inequality, we get Ax € f,, for
every x € bv(u,p), i.e., A € (bv(u,p): f).

Necessity: Suppose that A € (bv(u,p): f,). Then Ax exists for every x € bv(u,p), and this
implies that {an,k}kEN € [bv(u,p)]? forevery n € N, the necessity of (2.3) is immediate.

Now, Y, a(n, k, m)x; exists for each m, n and x € bv (u,p), the sequences {a(n, k, m)}ren
define the continuous linear functionals ¢,,, (x) on bv(u,p) by @, (x) = X a(n, k, m)xy ;
n,k,m € N. Since bv(u,p)is complete and sup,, , |2k a(n, k,m)x;| < oo, so by uniform
bounded principle , there exists M > 0 such that

SUPmn |(pmn (x)l = SUPmn |2k a(n: k, m)xkl
= SUPy | 2k a(n, k,m)x,| < M < oo,

This implies that sup,, , X |a(n, k,m)xk|P;f < oo, which shows the necessity of the
condition (2.2) and the proof of (i) is complete.

Theorem 2.4 : (a) Let1 < p, <M < oo forevery k € N. Then A € (bv(u,p): f,,) if and only
if (i) the condition (2.2)-(2.5) of Theorem 2.3 holds
(i) there is a sequence () of scalars such that
lim,a(n, k,m) = B, uniformly in n. (2.6)

Proof: Sufficiency: Suppose that the conditionsl(2.2)-(2.6) hqld and x € bv(u,p). Then Ax

exists and we have by (2.6) that |a(n, k, m)B~1|Pk - |B,B~!|Pk as m — oo uniformly in n for
each k € N, which leads us with (2.2) that

fool BB = Sola(nj,m)BT e
< supy n X;la(n, j,m)B~1Pr < oo,
holding for every k € N. Consequently reasoning as in the proof of the sufficiency of Theorem

2.3, the series Y, a(n, k,m)x, and Y, Byx; converges for every n,m and for every x €
bv(u,p). Now, for given ¢ >0 and x € bv(u,p), choose a fixed ky € N such that
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1
[Ziok,+1lxk|PE]" < &, where H = supypy. Then, there is some m, € N, by condition (ii)
such that [, [a(n, k,m) — B]| < e, for every m = m, and uniformly in n.

Now, since Y, a(n, k,m)x;, and Y Brx; converges (absolutely) uniformly inn,m and for
x € bv(u,p), we have that Y% 1[ a(n, k,m) — By ] x; < % , converges uniformly in n,m and

x € bv(u,p). Hence by conditions (i) and (ii) we have Y .4[ a(n, k,m) — B ] <§ for all

(m = my), uniformly in n. Therefore, |3 1[ a(n, k,m) — B ]| = 0 (m - o) uniformly in
i.e.,

lim,, Yr a(n, k,m)x;, = X; Brx; uniformly in n. (2.7)
Hence, Ax € f, which proves sufficiency.
Necessity: Suppose that A € (bv(u,p):f ). Then, since f c f,,( by Lemma 2.1 ), the
necessities of condition (i) is immediately obtained from Theorem 2.1 . To prove the necessity
of (ii) i.e,(2.6), consider the sequence e, = (0,0,..,1k"=rlace 00 .)€ bv(u,p),

condition (ii) follows immediately by (2.7) and the proof is complete.

Collary 2.5: A € (bv(u,p): fy) if and only if condition (i) and (ii) of above Theorem holds
along with 8, = 0 for each k € N.

Proof: The proof follows from theorem 2.4 by taking B, = 0 foreach k € N.
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