FIXED POINT THEOREMS FOR OCCSAIONALLY WEAKLY COMPATIBLE MAPS IN *G***-METRIC SPACE**

Saurabh Manro

School of Mathematics and Computer Applications, Thapar University, Patiala (Punjab)

Corresponding address: sauravmanro@hotmail.com *Received 11 May, 2012; Revised 04 February, 2013*

ABSTRACT

In this paper, we prove common fixed point theorems for a pair of occasionally weakly compatible maps in Symmetric *G*-metric space. Our results generalize and extend several relevant common fixed point theorems from the literature.

Key words: Symmetric *G*-metric space, occasionally weakly compatible maps, weakly compatible maps.

Subject classification: 2000 AMS: 47H10, 54H25

INTRODUCTION

In 1992, Dhage[1] introduced the concept of *D* – metric space. Recently, Mustafa and Sims[5] shown that most of the results concerning Dhage's *D* – metric spaces are invalid. Therefore, they introduced G – metric space. For more details on G – metric spaces, one can refer to the papers [5]-[8].

In 2006, Mustafa and Sims[6] introduced the concept of *G*-metric spaces as follows: **Definition 1.1.[6]** Let *X* be a nonempty set, and let *G:* $X \times X \times X \to R^+$ be a function satisfying the following axioms:

(*G*1) *G*(*x, y, z*) = 0 if *x = y = z,*

(*G2*) $0 < G(x, x, y)$, for all $x, y \in X$ with $x \neq y$,

(*G*3) $G(x, x, y) \leq G(x, y, z)$, for all $x, y, z \in X$ with $z \neq y$,

(*G*4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = ...$ (symmetry in all three variables) and

(*G5*) $G(x, y, z) \le G(x, a, a) + G(a, y, z)$ for all x, y, z, $a \in X$, (rectangle inequality) then the function *G* is called a generalized metric, or, more specifically a *G* – metric on *X* and the pair (X, G) is called a G – metric space. If condition (*G*6) also satisfied then (*X*, *G*) is called Symmetric *G*-metric space.

(G6) $G(x, y, y) = G(x, x, y)$ for all $x, y \in X$.

Definition 1.2.[6] Let (X, G) be a *G*–metric space, and let $\{x_n\}$ a sequence of points in *X*, a point '*x*' in *X* is said to be the limit of the sequence $\{x_n\}$ if $\lim_{m,n\to\infty} G(x, x_n, x_m) = 0$, and one

says that sequence $\{x_n\}$ is *G*–convergent to *x*.

Thus, that if $x_n \to x$ or $\lim_{n \to \infty} x_n = x$ in a *G*-metric space (X, G) then for each $\epsilon > 0$, there exists a positive integer *N* such that G (*x, x_n, x_m) <* ϵ *for all <i>m, n* $\geq N$.

Proposition 1.1.[6] Let (X, G) be a G – metric space. Then the following are equivalent: (1) $\{x_n\}$ is *G*-convergent to *x*,

(2) $G(x_n, x_n, x) \rightarrow 0$ as $n \rightarrow \infty$, (3) $G(x_n, x, x) \rightarrow 0$ as $n \rightarrow \infty$, (4) $G(x_m, x_n, x) \rightarrow 0$ as $m, n \rightarrow \infty$.

Definition 1.3.[6] Let (X, G) be a G – metric space. A sequence $\{x_n\}$ is called G – Cauchy if, for each $\varepsilon > 0$ there exists a positive integer *N* such that $G(x_n, x_m, x_l) < \varepsilon$ for all *n, m, l* ≥ *N*; i.e. if *G* (x_n , x_m , x_l) \rightarrow 0 as *n, m, l* $\rightarrow \infty$

Proposition 1.2.[6] If (X, G) **is a** G **– metric space then the following are equivalent:**

- (1) The sequence $\{x_n\}$ is G Cauchy,
- (2) for each $\varepsilon > 0$, there exist a positive integer *N* such that $G(x_n, x_m, x_m) < \varepsilon$ for all *n*, $m > N$.

Proposition 1.3.[6] Let (X, G) be a G – metric space. Then the function $G(x, y, z)$ is jointly continuous in all three of its variables.

Definition 1.4.[6] A G – metric space (X, G) is said to be G –complete if every G -Cauchy sequence in (*X, G*) is *G*-convergent in *X*.

Proposition 1.4.[6] A *G* – metric space (X, G) is G – complete if and only if (X, d_G) is a complete metric space.

Proposition 1.5.[6] Let (X, G) be a G – metric space. Then, for any x, y, z, a in X it follows that:

- (i) If $G(x, y, z) = 0$, then $x = y = z$,
- (ii) $G(x, y, z) \le G(x, x, y) + G(x, x, z),$
- (iii) $G(x, y, y) \leq 2G(y, x, x),$
- (iv) $G(x, y, z) \le G(x, a, z) + G(a, y, z),$
- (v) $G(x, y, z) \leq \frac{2}{3}(G(x, y, a) + G(x, a, z) + G(a, y, z)),$
- (vi) $G(x, y, z) \leq (G(x, a, a) + G(y, a, a) + G(z, a, a))$.

In 1996, Jungck [2] introduced the notion of weakly compatible maps as follows:

Definition 1.5.[2] A pair of self mappings (*f*, *g*) of a metric space is said to be weakly compatible if they commute at the coincidence points i.e. $Tu = Su$ for some *u* in *X*, then $TSu = STu$.

Definition 1.6. Let (*X, G*) be a Symmetric *G*-metric space. *f* and *g* be self maps on *X*. A point *x* in *X* is called a coincidence point of *f* and *g* iff $fx = gx$. In this case, $w = fx = gx$ is called a point of coincidence of f and g.

Definition 1.7[3]: A pair of self mappings (*f, g*) of a Symmetric *G*-metric space (*X, G*) is said to be weakly compatible if they commute at the coincidence points i.e., if $fu = gu$ for some *u* in *X*, then $fgu = gfu$.

It is easy to see that two compatible maps are weakly compatible but converse is not true.

Definition 1.8[3]: Two self mappings *f* and *g* of a Symmetric *G*-metric space (*X, G*) are

KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY VOL. 9, No. I, July, 2013, pp 175-180

said to be occasionally weakly compatible (*owc*) iff there is a point x in \overline{X} which is coincidence point of *f* and *g* at which *f* and *g* commute.

Lemma 1.1[3]: Let (*X, G*) be a Symmetric *G*-metric space. *f* and *g* be self maps on *X* and let *f* and *g* have a unique point of coincidence, $w = fx = gx$, then *w* is the unique common fixed point of *f* and *g*.

MAIN RESULTS

Following to Matkowski[5], let Φ be the set of all functions ϕ such that $\phi: [0, +\infty) \to [0, +\infty)$ be a non-decreasing function with $\lim \phi^n(t) = 0$ for all $t \in [0, +\infty)$. *n* $\rightarrow +\infty$

If $\phi \in \Phi$, then ϕ is called Φ - map. If ϕ is Φ - map, then it is an easy matter to show that

(A) $\phi(t) < t$ for all $t \in [0, +\infty)$;

(*B*) $\phi(0) = 0$.

From now unless otherwise stated, we mean by ϕ the Φ -map. Now, we introduce and prove our result.

Theorem 2.1: Let (*X*, *G*) be a Symmetric *G*-metric space. If *f* and *g* are *owc* self maps on *X* and

 $G(fx, fy, fy) \le \phi \left[max\{G(gx, gy, gy), G(gx, fy, fy), G(gy, fx, fx), G(gy, fy, fy)\}\right]$ (2.1) for all $x, y \in X$. Then *f* and *g* have a unique common fixed point.

Proof: Since f and g are *owc*, there exist a point $u \in X$ such that $fu = gu$ and $fgu = gfu$. We claim that *fu* is the unique common fixed point of *f* and *g*. We first assert that *fu* is a fixed point of *f.*

For, if $f f u \neq f u$, then from equation (2.1), we get $G(fu, ffu, ffu) \leq \phi$ [$max\{G(gu, gfu, gfu), G(gu, ffu, ffu), G(gfu, fu, fu), G(gfu, ffu, ffu)\}$] $= \phi \left[max\{G(\text{fu},\text{ffu},\text{ffu}), G(\text{fu},\text{ffu},\text{fu}), G(\text{fu},\text{fu},\text{fu}), G(\text{fu},\text{ffu},\text{ffu})\}\right]$ $= \phi \left[max \{ G(fu, ffu, ffu), G(fu, ffu, ffu), G(fu, fu, ffu), 0 \} \right]$ $= \phi \left[max \{ G(fu, ffu, ffu), G(fu, ffu), G(fu, ffu, ffu) \} \right]$ $= \phi \left[G(fu, ffu, ffu) \right] < G(fu, ffu, ffu)$

a contradiction. So *ffu* = *fu* and *ffu* = *fgu* = *gfu* = *fu*. Hence *fu* is a common fixed point of *f* and *g.*

Now we prove uniqueness. Suppose that $u, v \in X$ such that $fu = gu = u$ and $fv =$ $gv = v$ and $u \neq v$. Then from equation (2.1),

$$
G(u,v,v) = G(fu,fv,fv) \leq \phi \left[max\{G(gu,gv,gv), G(gu,fv,fv), G(gv,fu,fu), G(gv,fv,fv)\}\right]
$$

= $\phi \left[max\{G(u,v,v), G(u,v,v), G(v,u,u), G(v,v,v)\}\right]$
= $\phi \left[max\{G(u,v,v), G(u,v,v), G(v,v,u), 0\}\right]$
= $\phi \left[max\{G(u,v,v), G(u,v,v), G(u,v,v), 0\}\right]$
= $\phi \left[G(u,v,v) \right] < G(u,v,v)$

a contradiction. So $u = v$. Therefore, the common fixed point of f and g is unique. **Theorem 2.2:** Let (*X, G*) be a Symmetric *G*-metric space. Suppose that *f, g, S, T* are self maps on *X* and that the pairs {*f, S*} and {*g, T*} are each *owc*. If $G(fx,gy,gy) < max \{ G(Sx,Ty,Ty), G(Sx,fx,fx), G(Ty,gy,gy), G(Sx,gy,gy), G(Ty,fx,fx) \}$

 (2.2)

for all $x, y \in X$. Then *f, g, S* and *T* have a unique common fixed point in *X*.

Proof: By hypothesis, there exists points $x, y \in X$ such that $fx = Sx$ and $gy = Ty$. We claim that $fx = gy$. For, otherwise, by (2.2)

 $G(fx,gy,gy) < max \{ G(Sx, Ty, Ty), G(Sx, fx, fx), G(Ty, gy, gy), G(Sx, gy, gy), G(Ty, fx, fx) \}$

- $= max \{ G(fx, gy, gy), G(fx, fx, fx), G(gy, gy, gy), G(fx, gy, gy), G(gy, fx, fx) \}$
- $= max \{ G(fx,gy,gy), 0, 0, G(fx,gy,gy), G(gy,gy,fx) \}$

 $= max \{ G(fx,gy,gy), G(fx,gy,gy), G(fx,gy,gy) \} = G(fx,gy,gy)$

a contradiction. This implies that $fx = gy$. So $fx = Sx = gy = Ty$. Moreover, if there is another point *z* such that $fz = Sz$, then, using (2.2) it follows that $fz = Sz = gy = Ty$ or $fx =$ *fz* and $w = fx = Sx$ is the unique point of coincidence of *f* and *S*. Then by Lemma 1.1, it follows that w is the unique common fixed point of *f* and *S*. By symmetry, there is a unique common fixed point $z \in X$ such that $z = gz = Tz$.

Now, we claim that $w = z$. Suppose that $w \neq z$. Using (2.2),

 $G(w,z,z) = G(fw,gz,gz)$

 \langle *max* { *G*(*Sw,Tz,Tz*), *G*(*Sw,fw,fw*), *G*(*Tz,gz,gz*), *G*(*Sw,gz,gz*), *G*(*Tz,fw,fw*) }

 $G(w,z,z)$ < *max* { $G(w,z,z)$, $G(w,w,w)$, $G(z,z,z)$, $G(w,z,z)$, $G(z,w,w)$ }

 $= max \{ G(w,z,z), 0, 0, G(w,z,z), G(z,z,w) \}$

 $= max \{ G(w, z, z), G(w, z, z), G(w, z, z) \} = G(w, z, z)$

This is a contradiction. Therefore $w = z$ and w is a unique point of coincidence of f, g, S and *T*. By Lemma 1.1, *w* is the unique common fixed point of *f, g, S* and *T.*

Corollary 2.1: Let (*X, G*) be a Symmetric *G*-metric space. Suppose that *f, g, S* and *T* are self maps on *X* and that the pairs {*f , S*} and {*g , T*} are each *owc*. If $G(fx, gy, gy) \leq h m(x, y, y)$ where

 $m(x, y, y) = max\{G(Sx, Ty, Ty), G(Sx, fx, fx), G(Ty, gy, gy), [G(Sx, gy, gy), G(Ty, fx, fx)]/2\},$ (2.3) for all $x, y \in X$ and $0 \le h < 1$, then f, g, S and T have a unique common fixed point in X. **Proof:** Since (2.3) is a special case of (2.2), the result follows immediately from Theorem 2.2.

Theorem 2.3. Let *A, B, S* and *T* be self maps of Symmetric *G*-metric space (*X, G*), satisfying the following conditions:

- $A(X) \subset T(X), B(X) \subset S(X),$
- (2.5) pairs (*A, S*) or (*B, T*) satisfies property *E.A*.,
- (2.6) for all $x, y \in X$,

 $G(Ax, By, By) < \phi$ [*max* { $G(Sx, Ty, Ty)$, $G(Sx, By, By)$, $G(Ty, By, By)$ }]

where $\phi \in \Phi$. If one of *A(X), B(X), S(X)* or *T(X)* is complete subsets of *X* then pairs (*A, S*) and (*B, T*) have coincidence point.

Further, if (*A, S*) and (*B, T*) are weakly compatible then *A, B, S* and *T* have unique common fixed point in *X*.

Proof: Suppose the pair (B, T) satisfies the property $(E.A.)$. Then there exists a sequence ${x_n}$ in *X* such that

 $\lim_{n\to\infty} Bx_n = \lim_{n\to\infty} Tx_n = p$ for some $p \in X$.

Since $B(X) \subset S(X)$, there exists a sequence $\{y_n\}$ in X such that

 $Bx_n = Sy_n = p$. Hence $lim_{n\to\infty}Sy_n = p$.

We shall show that $\lim_{n\to\infty} A y_n = p$.

From (2.6), we have

 $G(Ay_n, Bx_n, Bx_n) < \phi$ [max { $G(Sy_n, Tx_n, Tx_n)$, $G(Sy_n, Bx_n, Bx_n)$, $G(Tx_n, Bx_n, Bx_n)$ }]

KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY VOL. 9, No. I, July, 2013, pp 175-180

Taking limit as $n \rightarrow \infty$, we get *limn→∞G*(*Ayn, p , p*) < [*max* {*G*(*p, p, p*), *G*(*p, p, p*), *G*(*p, p, p*)}] $=$ ϕ [*max* { 0, 0, 0}] = ϕ (0) = 0. This implies, $\lim_{n\to\infty} A y_n = p$. Thus we have, $\lim_{n\to\infty} A y_n = \lim_{n\to\infty} S y_n = \lim_{n\to\infty} B x_n = \lim_{n\to\infty} T x_n = p$. Suppose that $S(X)$ is a complete subspace of X. Then $p = Su$ for some $u \in X$. Subsequently, we have $\lim_{n\to\infty} A y_n = \lim_{n\to\infty} S x_n = \lim_{n\to\infty} B x_n = \lim_{n\to\infty} T x_n = p = S u$ Now, we shall show that *Au = Su.* From (2.6), we have $G(Au, Bx_n, Bx_n) < \phi$ [max{ $G(Su, Tx_n, Tx_n)$, $G(Su, Bx_n, Bx_n)$, $G(Tx_n, Bx_n, Bx_n)$ }] Taking limit as $n \rightarrow \infty$ we get $G(Au, Su, Su) < \phi$ [$max\{G(p, p, p), G(p, p, p), G(p, p, p)\}$] $= \phi \, [\text{max} \{ \, 0, 0, 0 \}] = \phi(0) = 0.$ Thus, we have $Au = Su$. Therefore (A, S) have coincidence point. The weak compatibility of *A* and *S* implies that $ASu = SAu$ and thus $AAu = ASu = SAu$ *SSu.* As $A(X) \subset T(X)$, there exists $v \in X$ such that $Au = Tv$. We claim that $Tv = Bv$. Suppose not, from (2.6) , we have $G(Au, Bv, Bv) < \phi$ [$max\{G(Su, Tv, Tv), G(Su, Bv, Bv), G(Tv, Bv, Bv)\}$] $= \phi \left[max \{ 0, G(Au, Bv, Bv), G(Au, Bv, Bv) \} \right]$ $=$ $=$ ϕ [*G*(*Au*, *Bv*, *Bv*)] < *G*(*Au*, *Bv*, *Bv*), this implies, $Au = Bv$. Hence, $Tv = Bv$. Therefore (B, T) have coincidence point Thus we have $Au = Su = Tv = Bv$. The weak compatibility of *B* and *T* implies that $BTv = TBv = TTv = BBv$. Finally, we show that *Au* is the common fixed point of *A, B, S* and *T.* From (2.6), suppose $Au \neq AAu$, we have $G(Au, AAu, AAu) = G(Au, Au, AAu)$ { by definition of symmetric space} = *G*(*AAu, Bv, Bv*) < [*max*{*G*(*SAu, Tv, Tv*), *G*(*SAu, Bv, Bv*), *G*(*Tv, Bv, Bv*)}] $= \phi \left[max\{G(AAu, Bv, Bv), G(AAu, Bv, Bv), G(Bv, Bv, Bv)\}\right]$ $= \phi \left[max \{ G(AAu, Bv, Bv), G(AAu, Bv, Bv), 0 \} \right]$ $= \phi \left[G(AAu, Bv, Bv) \right] < G(AAu, Bv, Bv),$ This gives, $A A u = B v = A u$ and thus $A A u = A u$. Therefore, *Au = AAu = SAu* is the common fixed point of *A* and *S*. Similarly, we prove that *Bv* is the common fixed point of *B* and *T*. Since $Au = By$, Au is common fixed point of *A, B, S* and *T*. The proof is similar when $T(X)$ is assumed to be a complete subspace of *X*. The cases in which *A*(*X*) or *B*(*X*) is a complete subspace of *X* are similar to the cases in which $T(X)$ or $S(X)$, respectively is complete subspace of *X* as $A(X) \subset T(X)$ and $B(X) \subset S(X)$.

Finally now we show that the common fixed point is unique. If possible, let x_0 and y_0 be two common fixed points of *A*, *B*, *S* and *T*. Suppose $x_0 \neq y_0$, then by condition (2.6), we have

$$
G(x_0, y_0, y_0) = G(Ax_0, By_0, By_0)
$$

< ϕ [*max* { $G(Sx_0, Ty_0, Ty_0)$, $G(Sx_0, By_0, By_0)$, $G(Ty_0, By_0, By_0)$ }]

KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY VOL. 9, No. I, July, 2013, pp 175-180

 $= \phi \left[max \left\{ G(x_0, y_0, y_0), G(x_0, y_0, y_0), G(y_0, y_0, y_0) \right\} \right]$ $= \phi \left[G(x_0, y_0, y_0) \right] < G(x_0, y_0, y_0),$

this implies $x_0 = y_0$.

Therefore, the mappings *A, B, S* and *T* have a unique common fixed point.

Corollary 2.2. Let *A, B* and *S* be self maps of Symmetric *G*-metric space (*X, G*), satisfying the following conditions:

- $A(X) \subset S(X), B(X) \subset S(X),$
- (2.8) pairs (*A, S*) or (*B, S*) satisfies property *E.A*.,
- (2.9) for all $x, y \in X$,

 $G(Ax, By, By) < \phi$ [max { $G(Sx, Sy, Sy), G(Sx, By, By), G(Sy, By, By)$ }]

where $\phi \in \Phi$. If one of $A(X)$, $B(X)$ or $S(X)$ is complete subsets of *X* then pairs (A, S) and (*B, S*) have coincidence point.

Further, if (*A, S*) and (*B, S*) are weakly compatible then *A, B* and *S* have unique common fixed point in *X.*

Proof: Take $T = S$ in Theorem 2.3.

ACKNOWLEDGEMENT

The author is grateful to an anonymous referee for his fruitful suggestions.

REFERENCES

- [1] Dhage B C, Generalized metric spaces and mappings with fixed point, *Bull.Calcutta Math. Soc.* 84 (1992) 329.
- [2] Jungck G, Commuting mappings and fixed point, *Amer. Math. Monthly,* 83(1976) 261.
- [3] Jungck G & Rhoades B E, Fixed point Theorems for occasionally weakly compatible mappings, *Fixed point theory*, 7(2006) 286-296
- [4] Matkowski J, "Fixed point theorems for mappings with a contractive iterate at a point," *Proceedings of the American Mathematical Society*, 62(2) (1977) 344.
- [5] Mustafa Z & Sims B, Some remarks concerning D-metric spaces, Proceedings of International Conference on Fixed Point Theory and Applications, *Yokoham Publishers, Valencia Spain*, July 13-19(2004) 189.
- [6] Mustafa Z & Sims B, A new approach to a generalized metric spaces, *J. Nonlinear Convex Anal*., 7(2006) 289.
- [7] Mustafa Z , Obiedat H & Awawdeh F, Some fixed point theorems for mappings on complete G-metric spaces, *Fixed point Theory and Applications*, Article ID 18970, (2008) 12.
- [8] Mustafa Z, Shatanawi W & Bataineh M, Existence of fixed points results in Gmetric spaces, *International Journal of Mathematics and Mathematical Sciences*, (2009) Article ID. 283028, 10 pages.
- [9] Shatanawi W, Fixed point theory for contractive mappings satisfying φ -maps in *G*-metric spaces, *Fixed Point Theory and Applications*, (2010) Article ID 181650, 9 pages doi:10.1155/2010/181650.