FIXED POINT THEOREMS FOR OCCSAIONALLY WEAKLY COMPATIBLE MAPS IN G-METRIC SPACE

Saurabh Manro

School of Mathematics and Computer Applications, Thapar University, Patiala (Punjab)

Corresponding address: sauravmanro@hotmail.com Received 11 May, 2012; Revised 04 February, 2013

ABSTRACT

In this paper, we prove common fixed point theorems for a pair of occasionally weakly compatible maps in Symmetric G-metric space. Our results generalize and extend several relevant common fixed point theorems from the literature.

Key words: Symmetric *G*-metric space, occasionally weakly compatible maps, weakly compatible maps.

Subject classification: 2000 AMS: 47H10, 54H25

INTRODUCTION

In 1992, Dhage[1] introduced the concept of D – metric space. Recently, Mustafa and Sims[5] shown that most of the results concerning Dhage's D – metric spaces are invalid. Therefore, they introduced G – metric space. For more details on G – metric spaces, one can refer to the papers [5]-[8].

In 2006, Mustafa and Sims[6] introduced the concept of *G*-metric spaces as follows: **Definition 1.1.[6]** Let *X* be a nonempty set, and let $G: X \times X \times X \to R^+$ be a function satisfying the following axioms:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y), for all $x, y \in X$ with $x \neq y$,

(G3) $G(x, x, y) \leq G(x, y, z)$, for all $x, y, z \in X$ with $z \neq y$,

(G4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \dots$ (symmetry in all three variables) and

(G5) $G(x, y, z) \le G(x, a, a) + G(a, y, z)$ for all x, y, z, $a \in X$, (rectangle inequality) then the function G is called a generalized metric, or, more specifically a G – metric on X and the pair (X, G) is called a G – metric space.

If condition (*G*6) also satisfied then (*X*, *G*) is called Symmetric *G*-metric space. (G6) G(x, y, y) = G(x, x, y) for all $x, y \in X$.

Definition 1.2.[6] Let (X, G) be a *G*-metric space, and let $\{x_n\}$ a sequence of points in *X*, a point '*x*' in *X* is said to be the limit of the sequence $\{x_n\}$ if $\lim_{m,n\to\infty} G(x, x_n, x_m) = 0$, and one

says that sequence $\{x_n\}$ is *G*-convergent to *x*.

Thus, that if $x_n \to x$ or $\lim_{n \to \infty} x_n = x$ in a *G*-metric space (X, G) then for each $\varepsilon > 0$, there exists a positive integer N such that G $(x, x_n, x_m) < \varepsilon$ for all $m, n \ge N$.

Proposition 1.1.[6] Let (*X*, *G*) be a *G* – metric space. Then the following are equivalent: (1) $\{x_n\}$ is *G*-convergent to *x*,

(2) $G(x_n, x_n, x) \rightarrow 0$ as $n \rightarrow \infty$, (3) $G(x_n, x, x) \rightarrow 0$ as $n \rightarrow \infty$, (4) $G(x_m, x_n, x) \rightarrow 0$ as $m, n \rightarrow \infty$.

Definition 1.3.[6] Let (X, G) be a G – metric space. A sequence $\{x_n\}$ is called G – Cauchy if, for each $\mathcal{E} > 0$ there exists a positive integer N such that $G(x_n, x_m, x_l) < \mathcal{E}$ for all $n, m, l \ge N$; i.e. if $G(x_n, x_m, x_l) \rightarrow 0$ as $n, m, l \rightarrow \infty$

Proposition 1.2.[6] If (X,G) is a G – metric space then the following are equivalent:

- (1) The sequence $\{x_n\}$ is G Cauchy,
- (2) for each $\mathcal{E} > 0$, there exist a positive integer N such that $G(x_n, x_m, x_m) < \mathcal{E}$ for all $n, m \ge N$.

Proposition 1.3.[6] Let (X, G) be a G – metric space. Then the function G(x, y, z) is jointly continuous in all three of its variables.

Definition 1.4.[6] A G – metric space (X, G) is said to be G-complete if every G-Cauchy sequence in (X, G) is G-convergent in X.

Proposition 1.4.[6] A G – metric space (X, G) is G – complete if and only if (X, d_G) is a complete metric space.

Proposition 1.5.[6] Let (X, G) be a G – metric space. Then, for any x, y, z, a in X it follows that:

- (i) If G(x, y, z) = 0, then x = y = z,
- (ii) $G(x, y, z) \le G(x, x, y) + G(x, x, z),$
- (iii) $G(x, y, y) \le 2G(y, x, x),$
- (iv) $G(x, y, z) \le G(x, a, z) + G(a, y, z),$
- (v) $G(x, y, z) \leq \frac{2}{3} (G(x, y, a) + G(x, a, z) + G(a, y, z)),$
- (vi) $G(x, y, z) \leq (G(x, a, a) + G(y, a, a) + G(z, a, a)).$

In 1996, Jungck [2] introduced the notion of weakly compatible maps as follows:

Definition 1.5.[2] A pair of self mappings (f, g) of a metric space is said to be weakly compatible if they commute at the coincidence points i.e. Tu = Su for some u in X, then TSu = STu.

Definition 1.6. Let (X, G) be a Symmetric *G*-metric space. *f* and *g* be self maps on *X*. A point *x* in *X* is called a coincidence point of *f* and *g* iff fx = gx. In this case, w = fx = gx is called a point of coincidence of f and g.

Definition 1.7[3]: A pair of self mappings (f, g) of a Symmetric *G*-metric space (X, G) is said to be weakly compatible if they commute at the coincidence points i.e., if fu = gu for some u in X, then fgu = gfu.

It is easy to see that two compatible maps are weakly compatible but converse is not true.

Definition 1.8[3]: Two self mappings *f* and *g* of a Symmetric *G*-metric space (*X*, *G*) are

said to be occasionally weakly compatible (*owc*) iff there is a point x in X which is coincidence point of f and g at which f and g commute.

Lemma 1.1[3]: Let (X, G) be a Symmetric *G*-metric space. *f* and *g* be self maps on *X* and let *f* and *g* have a unique point of coincidence, w = fx = gx, then *w* is the unique common fixed point of *f* and *g*.

MAIN RESULTS

Following to Matkowski[5], let Φ be the set of all functions ϕ such that $\phi:[0,+\infty) \rightarrow [0,+\infty)$ be a non-decreasing function with $\lim \phi^n(t) = 0$ for all $t \in [0,+\infty)$.

If $\phi \in \Phi$, then ϕ is called Φ - map. If ϕ is Φ - map, then it is an easy matter to show that

(A) $\phi(t) < t$ for all $t \in [0, +\infty)$;

 $(B) \quad \phi(0) = 0.$

From now unless otherwise stated, we mean by ϕ the Φ - map. Now, we introduce and prove our result.

Theorem 2.1: Let (X, G) be a Symmetric *G*-metric space. If *f* and *g* are *owc* self maps on *X* and

 $G(fx,fy,fy) \le \phi [max\{G(gx,gy,gy), G(gx,fy,fy), G(gy,fx,fx), G(gy,fy,fy)\}]$ (2.1) for all $x, y \in X$. Then f and g have a unique common fixed point.

Proof: Since f and g are *owc*, there exist a point $u \in X$ such that fu = gu and fgu = gfu. We claim that fu is the unique common fixed point of f and g. We first assert that fu is a fixed point of f.

For, if $ffu \neq fu$, then from equation (2.1), we get $G(fu,ffu,ffu) \leq \phi [max\{G(gu,gfu,gfu), G(gu,ffu,ffu), G(gfu,fu,fu), G(gfu,ffu,ffu)\}]$ $= \phi [max\{G(fu,ffu,ffu), G(fu,ffu,ffu), G(fu,fu,fu), G(fu,ffu,ffu)\}]$ $= \phi [max\{G(fu,ffu,ffu), G(fu,ffu,ffu), G(fu,fu,ffu), 0\}]$ $= \phi [max\{G(fu,ffu,ffu), G(fu,ffu,ffu), G(fu,ffu,ffu)\}]$ $= \phi [G(fu,ffu,ffu)] < G(fu,ffu,ffu)$

a contradiction. So ffu = fu and ffu = fgu = gfu = fu. Hence fu is a common fixed point of f and g.

Now we prove uniqueness. Suppose that $u, v \in X$ such that fu = gu = u and fv = gv = v and $u \neq v$. Then from equation (2.1),

 $G(u,v,v) = G(fu,fv,fv) \le \phi [max\{G(gu,gv,gv), G(gu,fv,fv), G(gv,fu,fu), G(gv,fv,fv)\}]$ = $\phi [max\{G(u,v,v), G(u,v,v), G(v,u,u), G(v,v,v)\}]$ = $\phi [max\{G(u,v,v), G(u,v,v), G(v,v,u), 0\}]$ = $\phi [max\{G(u,v,v), G(u,v,v), G(u,v,v), 0\}]$ = $\phi [G(u,v,v)] < G(u,v,v)$

a contradiction. So u = v. Therefore, the common fixed point of f and g is unique. **Theorem 2.2:** Let (X, G) be a Symmetric *G*-metric space. Suppose that f, g, S, T are self maps on X and that the pairs $\{f, S\}$ and $\{g, T\}$ are each *owc*. If $G(fx, gy, gy) < max \{ G(Sx, Ty, Ty), G(Sx, fx, fx), G(Ty, gy, gy), G(Sx, gy, gy), G(Ty, fx, fx) \}$.

 $G(fx,gy,gy) < max \{ G(Sx,Ty,Ty), G(Sx,fx,fx), G(Ty,gy,gy), G(Sx,gy,gy), G(Ty,fx,fx) \},$ (2.2)

for all $x, y \in X$. Then *f*, *g*, *S* and *T* have a unique common fixed point in *X*.

Proof: By hypothesis, there exists points $x, y \in X$ such that fx = Sx and gy = Ty. We claim that fx = gy. For, otherwise, by (2.2)

 $G(fx,gy,gy) < max \{ G(Sx,Ty,Ty), G(Sx,fx,fx), G(Ty,gy,gy), G(Sx,gy,gy), G(Ty,fx,fx) \}$

 $= max \{ G(fx,gy,gy), G(fx,fx,fx), G(gy,gy,gy), G(fx,gy,gy), G(gy,fx,fx) \}$

 $= max \{ G(fx, gy, gy), 0, 0, G(fx, gy, gy), G(gy, gy, fx) \}$

 $= max \{ G(fx,gy,gy), G(fx,gy,gy), G(fx,gy,gy) \} = G(fx,gy,gy)$

a contradiction. This implies that fx = gy. So fx = Sx = gy = Ty. Moreover, if there is another point z such that fz = Sz, then, using (2.2) it follows that fz = Sz = gy = Ty or fx = fz and w = fx = Sx is the unique point of coincidence of f and S. Then by Lemma 1.1, it follows that w is the unique common fixed point of f and S. By symmetry, there is a unique common fixed point $z \in X$ such that z = gz = Tz.

Now, we claim that w = z. Suppose that $w \neq z$. Using (2.2),

G(w,z,z) = G(fw,gz,gz)

 $< max \{ G(Sw, Tz, Tz), G(Sw, fw, fw), G(Tz, gz, gz), G(Sw, gz, gz), G(Tz, fw, fw) \}$

 $G(w,z,z) < max \{ G(w,z,z), G(w,w,w), G(z,z,z), G(w,z,z), G(z,w,w) \}$

 $= max \{ G(w,z,z), 0, 0, G(w,z,z), G(z,z,w) \}$

 $= max \{ G(w,z,z), G(w,z,z), G(w,z,z) \} = G(w,z,z)$

This is a contradiction. Therefore w = z and w is a unique point of coincidence of f, g, S and T. By Lemma 1.1, w is the unique common fixed point of f, g, S and T.

Corollary 2.1: Let (*X*, *G*) be a Symmetric *G*-metric space. Suppose that *f*, *g*, *S* and *T* are self maps on *X* and that the pairs $\{f, S\}$ and $\{g, T\}$ are each *owc*. If $G(fx,gy,gy) \leq h m(x,y,y)$ where

 $m(x,y,y) = max\{G(Sx,Ty,Ty),G(Sx,fx,fx),G(Ty,gy,gy),[G(Sx,gy,gy),G(Ty,fx,fx)]/2\},$ (2.3) for all $x, y \in X$ and $0 \le h < 1$, then f, g, S and T have a unique common fixed point in X. **Proof:** Since (2.3) is a special case of (2.2), the result follows immediately from Theorem 2.2.

Theorem 2.3. Let A, B, S and T be self maps of Symmetric G-metric space (X, G), satisfying the following conditions:

- (2.4) $A(X) \subset T(X), B(X) \subset S(X),$
- (2.5) pairs (A, S) or (B, T) satisfies property E.A.,
- (2.6) for all $x, y \in X$,

 $G(Ax, By, By) < \phi [max \{G(Sx, Ty, Ty), G(Sx, By, By), G(Ty, By, By)\}]$

where $\phi \in \Phi$. If one of A(X), B(X), S(X) or T(X) is complete subsets of X then pairs (A, S) and (B, T) have coincidence point.

Further, if (A, S) and (B, T) are weakly compatible then A, B, S and T have unique common fixed point in X.

Proof: Suppose the pair (*B*, *T*) satisfies the property (*E.A.*). Then there exists a sequence $\{x_n\}$ in *X* such that

 $lim_{n\to\infty}Bx_n = lim_{n\to\infty}Tx_n = p$ for some $p \in X$.

Since $B(X) \subset S(X)$, there exists a sequence $\{y_n\}$ in X such that

 $Bx_n = Sy_n = p$. Hence $lim_{n\to\infty}Sy_n = p$.

We shall show that $\lim_{n\to\infty}Ay_n = p$.

From (2.6), we have

 $G(Ay_n, Bx_n, Bx_n) < \phi [max \{G(Sy_n, Tx_n, Tx_n), G(Sy_n, Bx_n, Bx_n), G(Tx_n, Bx_n, Bx_n)\}]$

KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY VOL. 9, No. I, July, 2013, pp 175-180

Taking limit as $n \rightarrow \infty$, we get $\lim_{n\to\infty} G(Ay_n, p, p) < \phi [max \{G(p, p, p), G(p, p, p), G(p, p, p)\}]$ $= \phi [max \{ 0, 0, 0 \}] = \phi (0) = 0.$ This implies, $lim_{n\to\infty}Ay_n = p$. Thus we have, $\lim_{n\to\infty} Ay_n = \lim_{n\to\infty} Sy_n = \lim_{n\to\infty} Bx_n = \lim_{n\to\infty} Tx_n = p$. Suppose that S(X) is a complete subspace of X. Then p = Su for some $u \in X$. Subsequently, we have $\lim_{n\to\infty}Ay_n = \lim_{n\to\infty}Sx_n = \lim_{n\to\infty}Bx_n = \lim_{n\to\infty}Tx_n = p = Su$ Now, we shall show that Au = Su. From (2.6), we have $G(Au, Bx_n, Bx_n) < \phi [max \{ G(Su, Tx_n, Tx_n), G(Su, Bx_n, Bx_n), G(Tx_n, Bx_n, Bx_n) \}]$ Taking limit as $n \rightarrow \infty$ we get $G(Au, Su, Su) < \phi [max{G(p, p, p), G(p, p, p), G(p, p, p)}]$ $= \phi [max \{ 0, 0, 0 \}] = \phi (0) = 0.$ Thus, we have Au = Su. Therefore (A, S) have coincidence point. The weak compatibility of A and S implies that ASu = SAu and thus AAu = ASu = SAu =SSu. As $A(X) \subset T(X)$, there exists $v \in X$ such that Au = Tv. We claim that Tv = Bv. Suppose not, from (2.6), we have $G(Au, Bv, Bv) < \phi [max \{ G(Su, Tv, Tv), G(Su, Bv, Bv), G(Tv, Bv, Bv) \}]$ $=\phi [max\{0, G(Au, Bv, Bv), G(Au, Bv, Bv)\}]$ $= \phi [G(Au, Bv, Bv)] < G(Au, Bv, Bv),$ this implies, Au = Bv. Hence, Tv = Bv. Therefore (B, T) have coincidence point Thus we have Au = Su = Tv = Bv. The weak compatibility of *B* and *T* implies that BTv = TBv = TTv = BBv. Finally, we show that Au is the common fixed point of A, B, S and T. From (2.6), suppose $Au \neq AAu$, we have G(Au, AAu, AAu) = G(Au, Au, AAu){ by definition of symmetric space} $= G(AAu, Bv, Bv) < \phi [max \{ G(SAu, Tv, Tv), G(SAu, Bv, Bv), G(Tv, Bv, Bv) \}]$ $=\phi [max \{G(AAu, Bv, Bv), G(AAu, Bv, Bv), G(Bv, Bv, Bv)\}]$ $= \phi [max \{ G(AAu, Bv, Bv), G(AAu, Bv, Bv), 0 \}]$ $= \phi [G(AAu, Bv, Bv)] < G(AAu, Bv, Bv),$ This gives, AAu = Bv = Au and thus AAu = Au. Therefore, Au = AAu = SAu is the common fixed point of A and S. Similarly, we prove that Bv is the common fixed point of B and T. Since Au = Bv, Au is common fixed point of A, B, S and T. The proof is similar when T(X) is assumed to be a complete subspace of X. The cases in which A(X) or B(X) is a complete subspace of X are similar to the cases in which T(X) or S(X), respectively is complete subspace of X as $A(X) \subset T(X)$ and $B(X) \subset S(X)$. Finally now we show that the common fixed point is unique. If possible, let x_0 and y_0 be

Finally now we show that the common fixed point is unique. If possible, let x_0 and y_0 be two common fixed points of A, B, S and T. Suppose $x_0 \neq y_0$, then by condition (2.6), we have

$$G(x_0, y_0, y_0) = G(Ax_0, By_0, By_0)$$

< $\phi [max \{G(Sx_0, Ty_0, Ty_0), G(Sx_0, By_0, By_0), G(Ty_0, By_0, By_0)\}]$

KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY VOL. 9, No. I, July, 2013, pp 175-180

 $= \phi [max \{ G(\mathbf{x}_0, \mathbf{y}_0, \mathbf{y}_0), G(x_0, y_0, y_0), G(y_0, y_0, y_0) \}]$ = $\phi [G(x_0, y_0, y_0)] < G(x_0, y_0, y_0),$

this implies $x_0 = y_0$.

Therefore, the mappings A, B, S and T have a unique common fixed point.

Corollary 2.2. Let A, B and S be self maps of Symmetric G-metric space (X, G), satisfying the following conditions:

(2.7) $A(X) \subset S(X), B(X) \subset S(X),$

- (2.8) pairs (A, S) or (B, S) satisfies property E.A.,
- (2.9) for all $x, y \in X$,

 $G(Ax, By, By) < \phi [max \{G(Sx, Sy, Sy), G(Sx, By, By), G(Sy, By, By)\}]$

where $\phi \in \Phi$. If one of A(X), B(X) or S(X) is complete subsets of X then pairs (A, S) and (B, S) have coincidence point.

Further, if (A, S) and (B, S) are weakly compatible then A, B and S have unique common fixed point in X.

Proof: Take T = S in Theorem 2.3.

ACKNOWLEDGEMENT

The author is grateful to an anonymous referee for his fruitful suggestions.

REFERENCES

- [1] Dhage B C, Generalized metric spaces and mappings with fixed point, *Bull.Calcutta Math. Soc.* 84 (1992) 329.
- [2] Jungck G, Commuting mappings and fixed point, *Amer. Math. Monthly*, 83(1976) 261.
- [3] Jungck G & Rhoades B E, Fixed point Theorems for occasionally weakly compatible mappings, *Fixed point theory*, 7(2006) 286-296
- [4] Matkowski J, "Fixed point theorems for mappings with a contractive iterate at a point," *Proceedings of the American Mathematical Society*, 62(2) (1977) 344.
- [5] Mustafa Z & Sims B, Some remarks concerning D-metric spaces, Proceedings of International Conference on Fixed Point Theory and Applications, *Yokoham Publishers, Valencia Spain*, July 13-19(2004) 189.
- [6] Mustafa Z & Sims B, A new approach to a generalized metric spaces, J. Nonlinear Convex Anal., 7(2006) 289.
- [7] Mustafa Z, Obiedat H & Awawdeh F, Some fixed point theorems for mappings on complete G-metric spaces, *Fixed point Theory and Applications*, Article ID 18970, (2008) 12.
- [8] Mustafa Z, Shatanawi W & Bataineh M, Existence of fixed points results in Gmetric spaces, *International Journal of Mathematics and Mathematical Sciences*, (2009) Article ID. 283028, 10 pages.
- Shatanawi W, [9] Fixed point theory for contractive mappings satisfying φ -maps in *G*-metric spaces, Fixed Point Theory and Applications, (2010) Article ID 181650, 9 pages doi:10.1155/2010/181650.