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ABSTRACT 
In this work we show that the Tuan-Duc formula used to invert the Laplace transform is equivalent to the expression given by 

Post-Widder. 
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INTRODUCTION 
The Laplace transform of f(x) is defined as [1]: 
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and the inverse problem is to determine f(t) for a given F(s). Bromwich [2, 3] gave the expression: 
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where the integration is performed in the complex plane along the straight line .x   

But due to the interest to get the inverse Laplace transform without complex variable,        

Post [4] and Widder [5, 7] found the following formula in a real variable: 
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In Sec. 2 it is given an alternative form for (3) to obtain a procedure for the recent expression of  

Tuan-Duc [6]: 
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and there it will be clear that (4) is another manner to write (3). 

 

THE POST-WIDDER AND TUAN-DUC FORMULAE 

 First, we know that [1]: 

 

1

0

!
,L n s x n

n

n
x e x dx

s






    

                          (5) 

mailto:jlopezb@ipn.mx


KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY   

VOL. 9, No. I, July, 2013, pp 161-164 

162 

 

where in  imlplies:
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On the other hand, the binomial theorem of Newton gives: 
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such that for  r  ≥ 1: 
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where we employ the gamma function 
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and our integral adopts the form: 
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The expansion of f (x) in Taylor series around x = t: 
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together with (6) and (8), leads to the relation: 
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Further, from (1) it is immediate that: 
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2and after successive applications of the operator  we get the identity:
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which by substitution into (10)  gives the inversion formula: 
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allowing the construction of f(t) from F(s). 

It is simple to prove that (12) leads to the expression (3) deduced by  Post [4]–Widder [5, 7];  

in fact, with :
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which in (12) implies (3). That is, the Post-Widder relation is the simplified form of (12).  

 

From (1), it can be shown that: 
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and the identity:  
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is generated, which in (10) gives the Tuan-Duc formula [6] as shown in (4).  

Therefore, (3), (4) and (12) are equivalent among them because: 
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