ON SOME REFINEMENTS OF BERNSTEIN TYPE INEQUALITIES

¹Irshad Ahmad*,¹A. Liman,²W. M Shah

¹Department of Mathematics, National Institute of Technology, India –190006

²Department of Mathematics, Kashmir Mathematical Institute, India-190001

*Corresponding author: zubairmaths@rediffmail.com *Received 06 August, 2012; Revised 24 March, 2013*

Abstract:

In this paper, we generalize some inequalities concerning to the Bernstein's inequality for polynomials.

Mathematics Subject Classification(2000): 30C10, 30C15.

Keywords and Phrases: Polynomials, Inequalities, Zeros

INTRODUCTION

If $P(z)$ is a polynomial of degree n, then concerning the estimate of the maximum of $P(z)$ on the unit circle $|z| = 1$ and the estimate of the maximum of $|P(z)|$ on a large circle $|z| = R > 1$, we have

$$
\max_{|z|=1} |P'(z)| \le n \max_{|z|=1} |P(z)| \tag{1}
$$

$$
\max_{|z|=R>1} |P'(z)| \le R^n \max_{|z|=1} |P(z)| \tag{2}
$$

Inequality (1) is an immediate consequence of Bernstein's theorem on the derivative of a trigonometric polynomial (for reference see [4]). Inequality (2) is a simple deduction from maximum modulus principle (see [3,p.346] or [2, Vol. i, p.137]). In both (1) and (2) equality holds only for $P(z) = \alpha z^n$, $|\alpha| \neq 0$ that is, if and only if $P(z)$ has all its zeros at the origin. Recently it was shown by Frappier, Rahman and Ruscheweyh [1, theorem 8] that, If $P(z)$ is a polynomial of degree n, then

$$
\max_{|z|=1} |P'(z)| \le n \max_{1 \le k \le 2n} \left| p(e^{\frac{ik\pi}{n}}) \right| \; .
$$

Clearly (3) represents a refinement of (1), since the maximum of $|P(z)|$ on may be larger than the maximum of $|P(z)|$ taken over the $(2n)^{th}$ roots of unity, as is shown by the example $P(z) = zⁿ + ia$, $a > 0$

Now we have, If $P(z)$ is a polynomial of degree n, then for all real λ , and $R > 1$,

$$
z > 0
$$

\n
$$
P(z) \text{ is a polynomial of degree n, then for all real } \lambda \text{ and } R > 1,
$$

\n
$$
\max_{|z|=1} |P(Rz) - P(z)| \le \frac{R^n - 1}{2} [M_{\lambda} + M_{\lambda + \pi}]
$$
\n(4)

where

KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY VOL. 9, No. I, July, 2013, pp 140-144

$$
M_{\lambda} = \max_{1 \leq k \leq n} \left| P(e^{\frac{i(2k\pi + \lambda)}{n}}) \right|
$$

(2) $\left[\frac{2k+2\lambda}{n}\right]$

by $\lambda + \pi$ in M_{λ} . The result is best possible and equality

of degree n, then for all real λ , and $R > 1$,
 $\left(-P(z)\right] \le \frac{R^{n-1}}{2}$ $\left\{M_{\lambda} + M_{\lambda + \pi}\right\}$. (5)

by $\lambda + \pi$ in M_{λ} .
 \left and $M_{\lambda+\pi}$ is obtained by replacing λ by $\lambda+\pi$ in M_{λ} . The result is best possible and equality holds for $P(z) = z^n + re^{i\alpha}, -1 \le r \le 1$.

Theorem A: If $P(z)$ is a polynomial of degree n, then for all real λ , and $R > 1$,

$$
\max_{|z|=1} |P(Rz) - P(z)| \le \frac{R^{n}-1}{2} [M_{\lambda} + M_{\lambda+\pi}], \tag{5}
$$

where

$$
M_{\lambda} = \max_{1 \le k \le n} \left| P(e^{\frac{i(2k\pi + \lambda)}{n}}) \right|
$$

and $M_{\lambda+\pi}$ is obtained by replacing λ by $\lambda+\pi$ in M_{λ} .

Theorem B: If $P(z)$ is a polynomial of degree n, having all zeros in $|z| \ge 1$, then for all real λ and $R > 1$,

$$
\max_{|z|=1} |P(Rz) - P(z)| \le \frac{R^n - 1}{2} [M_\lambda^2 + M_{\lambda + \pi}^2]^{1/2}.
$$
 (6)

Theorem C: If $P(z)$ is a polynomial of degree n such that $P(1)=0$, then for

$$
|P\left(1 - \frac{\omega}{n}\right)| \le \left[\left(1 - \frac{\omega}{n}\right)\right]^n \left[\left|P\left(\frac{1}{r}\right)\right| - \frac{1}{2}\left\{M_0 + M_{\lambda + \pi}\right\}\right] + \frac{1}{2}\left\{M_0 + M_{\lambda + \pi}\right\}.\tag{7}
$$

MAIN RESULTS

Theorem 1 : If $P(z)$ is a polynomial of degree n, then for all real λ and $R > r \ge 1$ $\max_{|z|=1} |P(rz) - P(rz)| \leq \frac{R^n - r^n}{2}$ $\frac{1}{2}$ $\left[M_{\lambda} + M_{\lambda + \pi} \right]$ (8)

Remark 1: For $r = 1$, we get (5).

On dividing both sides of (8) by $(R - r)$ and letting $R \rightarrow r$, we get

Corollary 1: If $P(z)$ is a polynomial of degree n, then for all real λ and

$$
\max_{|z|=1} |P'(rz)| \leq \frac{nr^{n-1}}{2} [M_\lambda + M_{\lambda + \pi}]
$$

Theorem 2: If $P(z)$ is a polynomial of degree n, having all zeros in then for all real λ and $R > r \ge 1$,

$$
\max_{|z|=1} |P(Rz) - P(rz)| \le \frac{R^n - r^n}{2} \left[M_{\lambda}^2 + M_{\lambda + \pi}^2 \right]^{1/2} \tag{9}
$$

KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY VOL. 9, No. I, July, 2013, pp 140-144

Remark 2: For $r = 1$, we get (6).

Now dividing on both sides by $(R-r)$ of (9) and letting $R \rightarrow r$, we obtain **Corollary 2:** If $P(z)$ is a polynomial of degree n, having all zeros in then for all real λ and $r \geq 1$,

$$
\max_{|z|=1} |P'(rz)| \le \frac{nr^{n-1}}{2} [M_\lambda^2 + M_{\lambda+\pi}^2]^{\frac{1}{2}}
$$

Theorem 3: If $P(z)$ is a polynomial of degree n such that $P(1)=0$, then for and $r \geq 1$

$$
|P\left(1-\frac{\omega}{n}\right)| \le \left[\left(1-\frac{\omega}{n}\right)r\right]^n[|P\left(\frac{1}{r}\right)| - \frac{1}{2}\{M_0 + M_{\lambda + \pi}\}\] + \frac{1}{2}\{M_0 + M_{\lambda + \pi}\}\
$$

Remark 3: For $r = 1$, we get (7).

LEMMAS

To prove these results, we use the following lemmas:

Lemma 1: If $P(z)$ is a polynomial of degree n, then for all real λ ,

$$
\textstyle \max_{|z|=1} |P'(z)| \leq \frac{n}{2} [\ M_\lambda + M_{\lambda+\pi} \] \ ,
$$

where

$$
M_{\lambda} = \max_{1 \leq k \leq n} \left| P(e^{\frac{i(2k\pi + \lambda)}{n}}) \right|
$$

and $M_{\lambda+\pi}$ is obtained by replacing λ by $\lambda+\pi$ in M_{λ} .

Lemma 2: If $P(z)$ is a polynomial of degree n, having all zeros in then for all real λ

$$
\max_{|z|=1} |P'(z)| \leq \frac{n}{2} [M_{\lambda}^{2} + M_{\lambda+\pi}^{2}]^{1/2}.
$$

 The result is sharp and equality holds for $n + e^{i\alpha}$.

PROOF OF THEOREMS

Proof of Theorem 1: Applying (2) to the polynomial $P'(z)$, which is of degree $n-1$, we get

$$
\left| p'(se^{i\theta}) \right| \leq s^{n-1} \max_{|z|=1} |p'(z)|
$$

Therefore by lemma 1 , we have

$$
\max_{|z|=1} |P'(sz)| \le \frac{ns^{n-1}}{2} \left[M_{\lambda} + M_{\lambda + \pi} \right]
$$

$$
2 < 2\pi
$$
 and $R > r > 1$ we have

Hence for each θ , $0 \le \theta < 2\pi$ and $R > r \ge 1$, we have

$$
\left| P(\text{Re}^{i\theta}) - P(re^{i\theta}) \right| = \left| \int_{r}^{R} e^{i\theta} P'(se^{i\theta}) ds \right|
$$

KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY VOL. 9, No. I, July, 2013, pp 140-144

$$
|P(Rz) - P(rz)| \leq \frac{n}{2} [M_{\lambda} + M_{\lambda + \pi}] \int_r^R s^{n-1} ds
$$

$$
|P(Rz) - P(rz)| \leq \frac{R^n - r^n}{2} \left[M_{\lambda} + M_{\lambda + \pi} \right],
$$

where

$$
M_{\lambda} = \max_{1 \leq k \leq n} \left| P(e^{\frac{i(2k\pi + \lambda)}{n}}) \right|
$$

and $M_{\lambda+\pi}$ is obtained by replacing λ by $\lambda+\pi$ in M_{λ} . **Proof of Theorem 2:** Applying (2) to the polynomial $P'(z)$ of degree $n-1$, we get 1 $\left| p'(se^{i\theta}) \right| \leq s^{n-1} \max_{|z|=1} |p'(z)|$ $\left|\frac{1}{\cos^{\alpha}}\right| \leq s^{n-1} \max_{|z|=1} |p'(z)|$

Using lemma 2, we have

 $\max_{|z|=1}$ $|P'(se^{i\vartheta})| \leq s^{n-1}(\frac{n}{2})$ $\frac{n}{2}$)[$M_{\lambda}^2 + M_{\lambda + \pi}^2$ 1¹/₂ Hence for each θ , $0 \le \theta < 2\pi$ and $R > r \ge 1$, we have, for

$$
\left|P(\mathrm{Re}^{i\theta})-P(re^{i\theta})\right|=\left|\int\limits_{r}^{R}e^{i\theta}P'(se^{i\theta})ds\right|
$$

This implies

$$
\max_{|z|=1} |P(Rz) - P(rz)| \leq \frac{R^n - r^n}{2} [M_\lambda^2 + M_{\lambda + \pi}^2]^{\frac{1}{2}},
$$

where

$$
M_{\lambda} = \max_{1 \leq k \leq n} \left| P(e^{\frac{i(2k\pi + \lambda)}{n}}) \right|
$$

and $M_{\lambda+\pi}$ is obtained by replacing λ by $\lambda+\pi$ in M_{λ} .

Proof of Theorem 3: If $Q(z) = z^n \overline{P(\frac{1}{z})}$ z $\overline{P(\frac{1}{2})}$, then $|Q(z)| = |P(z)|$ for $|z| = 1$ andby hypothesis, we have $|Q(1)| = |\overline{P}(1)| = 0$. Applying theorem 1 to $Q(z)$ with $\lambda=0$, we get for $R > r \ge 1$ $R^n - r^n$ $\frac{-r}{2}$ [$M_0 + M_{\pi}$]

This implies for $R > r \geq 1$

$$
|\overline{P(\frac{1}{R})}| \leq \frac{1}{2R^n} (R^n - r^n) [\overline{M}_0 + M_\pi] + \frac{r^n}{R^n} |\overline{P(\frac{1}{r})}|.
$$

If $0 < \omega \leq n$ then $\left(1 - \frac{\omega}{n}\right)$ $\left(\frac{\omega}{n}\right)^{-1} > 1$ and therefore and in particular, we have

$$
|P\left(1-\frac{\omega}{n}\right)| \leq \left[\left(1-\frac{\omega}{n}\right)r\right]^{n}\left[|P\left(\frac{1}{r}\right)| - \frac{1}{2}\left\{M_0 + M_{\lambda + \pi}\right\}\right] + \frac{1}{2}\left\{M_0 + M_{\lambda + \pi}\right\}.
$$
 Hence the result.

re

ACKNOWLEDGEMENT

Authors are highly thankful to the referees for their valuable suggestions/comments.

REFERENCES

- [1] Frappier C, Rahman Q I & Ruscheweyh St, New Inequalities for polynomials , Trans Amer. Math. Soc. 288 (1985) 69.
- [2] Polya G and G. Szego G, Aufgaben und Lehrsatze aus der Analysis, Springer verlag, Berlin, 1925
- [3] Riesze M, Uber einen Satz des Herrn Serge Bernstein, Acta Math. 40 (1916)337.
- [4] Schaeffer A C, Inequalities of A. Markoff and S. Bernstein, for polynomials and related functions, Bull. Amer. Math. Soc. 47(1947)565.