A STUDY ON ESSENTIAL SUBMODULE AND SINGULAR MODULE

Tulasi Prasad Nepal

Central Department of Mathematics, Tribhuvan University, Kirtipur, Kathmandu, Nepal

Corresponding author: tulasi.nepal@yahoo.com Received 09 October, 2013; Revised 23 December, 2013

ABSTRACT

In this paper we discus about direct sum, essential submodule, singular module, essential monomorphism and some theorems.

Key Words: Ring, Module, Direct sum, Essential submodule, Singular module.

1. INTRODUCTION

A ring is a system(R, +, ., 0, 1) consisting of a set R, two binary operations, addition(+) and multiplication(.) and two elements $0 \neq 1$ of R such that (R,+, 0) is an abelian group, (R, ., 1) is a semi group with identity and multiplication is both left and right distributive over addition. A ring whose multiplicative structure is commutative is called a commutative ring. A subset I of a ring R is a two sided ideal of R in case it is an additive subgroup such that for all $x \in I$ and all a, $b \in R$

axb ∈ I

The two subsets $\{0\}$ and R both ideals of R; these are called the trivial ideals of R. Any ideal of R other than R itself is called a proper ideal. The ideal $\{0\}$, which we frequently denote simply by 0, is called the zero ideal.

The ring R is simple if {0 } and R are the only ideals of R. A ring R with identity $1 \neq 0$ in which every non zero element a is unit, is called a division ring. Thus every division ring is a simple ring, for let R be a division ring and I be an ideal of R such that $I \neq \{0\}$, then there exists at least one $a \in I$ such that $a \neq 0$. Since R is a division ring, so $a^{-1} \in R$ and $aa^{-1} = 1$. since $a \in I$, $a^{-1} \in R$,

 $aa^{-1} \in I$, by definition of an ideal, or $1 \in I$, therefore I = R since if I is an ideal of a ring R with unity such that $1 \in I$, then I = R.

On the other hand every commutative simple ring is a field but in general simple rings need not be division ring, and division rings need not be commutative, for example, let H be the subset of $M_2(\mathbb{C})$ the 2 x 2 matrices over the complex field, of all elements of the form

$$q = \begin{pmatrix} a + ib & c + id \\ c - id & a - ib \end{pmatrix}$$

with a,b, c,d \in R,then H is a subring of ,M₂(C). Consider the elements

 $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, i = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, j = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, k = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \in H.$

Thus above typical element q of H is q = a1 + bi + cj + dk, then if $q \neq 0$, it is invertible, that is H is a division ring but it is not commutative.

Let R be a ring(with or without 1 and commutative or not). By a left R- module M, we mean, an abelian group (M, +) together with a map $R \times M \rightarrow M$, $ax \mapsto ax$, called the scalar multiplication or the structure map, such that

1. r(x+y)=rx+ry for all $r \in R$ and $x, y \in M$

2. $(r_1+r_2)x = r_1x + r_2x$ for all $r_1, r_2 \in \mathbb{R}$ and $x \in M$ and

3. $(r_1r_2)x = r_1(r_2x)$ for all $r_1, r_2 \in \mathbb{R}$ and $x \in \mathbb{M}$.

Elements of R are called scalars. The left R-Module is denoted by R^M .

Let M be an R- module. A nonempty subset N of M is called an R-submodule of M if N is an additive subgroup of M i.e. x, $y \in N$ implies x-y $\in N$ and N is closed for scalar multiplication i.e. $x \in N$, $a \in R$ implies $ax \in N$.

Let M be an R-module. A submodule K of a left R- module \mathbb{R}^M is called a direct summand of M if there exists a submodule K' of M such that $M = K \oplus K'$, that is M = K + K' and $K \cap K' = 0$.

A submodule K of \mathbb{R}^{M} is called essential (or large) submodule in M if whenever L is a submodule of M such that $K \cap L = 0$ implies L = 0 and it is denoted by K Δ M and read as "K is essential in M."

For example, if M is a left R module. Then M \triangle M because if M \cap L =0 implies L= 0, since L \leq M.

The two concepts, direct summand and essential submodule are reminiscent of the topological concepts of connected components and dense.

2 MAIN RESULTS

Lemma 1: Let L (R) be the set of all essential left ideals of R. Let $I \in L(R)$ and $r \in R$. Then

 $\operatorname{Ir}^{-1} = \{ a \in \mathbb{R} : ar \in \mathbb{I} \}$

is an essential left ideal of R. i.e. $Ir^{-1} \in L(R)$.

Proof: Let $Ir^{-1} \cap K = 0$ where K is a left ideal of R. Then $I \cap Kr = 0$ where Kr is a left ideal of R.

or $Kr = 0 \subseteq I$, since $I\Delta$ R. So $Kr \subseteq I$ implies $K \subseteq Ir^{-1}$. Therefore $K = Ir^{-1} \cap K = 0$ implies K = 0. Hence Ir^{-1} is an essential left ideal of R.

Lemma 2: Let A be a left R- module. Then

 $Z(A) = \{ x \in A : Ix = 0 \text{ for some } I \in L(R) \}$

is a submodule of A.

Proof: (i) Since $R \in L(R)$ implies R0 = 0 implies $0 \in Z(A)$.

(ii) If x, $y \in Z(A)$ then Ix = 0, Jy=0 for some I, $J \in L(R)$. Since $(I \cap J) \in L(R)$. Therefore

 $(I \cap J) (x-y)=0$ implies $x-y \in Z(A)$.

(iii) Given any $r \in R$, we have $Ir^{-1} \in L(R)$ where $Ir^{-1} = \{a \in R : ar \in I\}$. So $(Ir^{-1})(rx) \leq Ix = 0$ since $I \in L(R)$. Therefore $(Ir^{-1})(rx)=0$. So $rx \in Z(A)$.

Hence Z(A) is a submodule of A.

Definition: A pair of module homomorphism, $A \xrightarrow{f} B \xrightarrow{g} C$, is said to be exact at B if image of f = kernel of g. An exact sequence of the form $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is called a short exact sequence; note that f is a monomorphism and g is an epimorphism. A monomorphism f: $\mathbb{R}^{M} \rightarrow \mathbb{R}^{N}$ is called essential monomorphism if Im f ΔN .

Theorem 1: A module C is singular if and only if there exists a short exact sequence $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ such that f is an essential monomorphism.

Proof: Assume we have such exact sequence. Let $b \in B$. Define a map φ from R to B such that K be a left ideal of R such that $I \cap K = 0$. Then $f(A) \cap Kb = 0$, where Kb is a submodule of B which implies that Kb=0, since $f(A) \Delta B$ and Kb $\subseteq f(A)$ and K $\subseteq I$. So $K = K \cap I = 0$. Therefore $I = \varphi^{-1}(f(A)) \in L(R)$. Now $Ib \subseteq f(A) = \ker g$, by exact sequence which implies that g(Ib) = 0 or I(g(b)) = 0. Then $g(b) \in Z(C)$. Therefore $C = g(B) \subseteq Z(C)$, since g is onto. Hence C = Z(C) and C is singular.

Conversely, let C is singular. Then Z(C) = C. We choose a short exact sequence

 $0 \rightarrow A \xrightarrow{\subseteq} B \xrightarrow{g} C \rightarrow 0$ such that B is free. If $\{b_{\alpha}\}_{\alpha}$ is a basis of B. Then for each α , we have $I_{\alpha}g(b_{\alpha})=0$ for some $I_{\alpha} \in L(R)$. Therefore $g(I_{\alpha}b_{\alpha})=0$. $I_{\alpha}b_{\alpha} \subseteq \ker g= \operatorname{im} i = A$. Since I_{α} is essential in R^{R} , Then $I_{\alpha}b_{\alpha}$ is also essential in Rb_{α} for all α , for if $I_{\alpha}b_{\alpha} \cap K=0$, then $I_{\alpha}\cap Kb^{-1}{}_{\alpha}=0$. Therefore $Kb^{-1}{}_{\alpha}=0$, since $I_{\alpha} \Delta R$ and $Kb^{-1}{}_{\alpha}=\{r \in R: rb_{\alpha} \in K\}$ which implies K=0. So $I_{\alpha}b_{\alpha} \Delta$ Rb_{α} implies $\oplus I_{\alpha}b_{\alpha} \Delta Rb_{\alpha}=B$. Then $A \Delta B$, since $\oplus I_{\alpha}b_{\alpha} \subseteq A \subseteq B$. Hence i: $A \rightarrow B$ is an essential monomorphism.

REFERENCES

- [1] Anderson, F.W. & Fuller, K.R.; *Rings and Categories of Modules*, Second edition, Springer- Verlag, 1991.
- [2] Goodearl K. R., *Ring Theory (Non singular rings and Modules)*, Marcel Dekker, Inc. New York, 1976.
- [3] Wong, E.T., Rings with nonzero singular ideals, *J Math. Kyoto Univ.* 10(1970), 419-432.
- [4] Wiegand, S., Galois theory of essential extension of module, *Canadian J. Math.* 24(1972), 573- 579.