Molecular Structure, MESP, HOMO-LUMO, and Vibrational Analysis of β-Asarone Using Density Functional Theory
DOI:
https://doi.org/10.3126/kuset.v9i2.63714Keywords:
β-asarone, Vibrational spectroscopy, DFT, MESP, HOMO-LUMOAbstract
Medicinal Plants have always had an important place in the therapeutic armoury of mankind. β-Asarone mainly found in Acorus calamus L., Araceae, is one of the main bioactive constituents of its essential oil. In this communication, we have presented the geometry optimization, molecular electrostatic potential surface, frontier orbital energy gap and vibrational wavenumbers of β-asarone using density functional theory (DFT/B3LYP) method employing 6-311G(d,p) basis set. A complete vibrational assignment has been done on the basis of an isolated molecule. The electronic transition has been calculated in the gas phase as well as in solvent environment (integral- equation formalism polarizable continuum model; IEF-PCM) using TD-DFT/6-31G basis set.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.