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Abstract
For this research, the Differential TransformMethod (DTM) approach was considered in studying a fluid of third grade; which is non-Newtonian,
inside a circular duct experiencing a magnetic force and joule heating. We considered Reynolds’ model viscosity in the analysis. In the situation
where the joule heating parameter (J) together with the magnetic parameter (M ) are zero (J = M = 0), results of the mid-point (where
r = 0) temperature (θ(0)) shows that the Differential Transform Method’s convergence as compared to the Adomian decomposition method
(ADM) solution is faster. The difference between Differential Transform Method and the Adomian solution is about 10−2. The results of the
fluid’s velocity as well as temperature are presented as graphs, fromwhich we found out that: increment of magnetic force reduces both velocity
and temperature of the fluid and higher values of joule heating factor causes velocity of the flow to increase, while increment in joule heating
factor reduces the fluid’s temperature midpoint of the duct.
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1. Introduction

The Fourier and Laplace transform methods are used to solve
various problems in engineering. They create algebraic equations
from differential equations for ease in solution of such problems.
But, when applying to nonlinear problems, these methods become
sophisticated and tough tohandle. Onemethod throughwhich this
difficulty can be surmounted is the Differential TransformMethod
(DTM). The DTMwas used by [1] for solving a circuit problem in en-
gineering. As a derivation from Taylor series expansion, the DTM
creates a polynomial as analytic results. For the DTM approach,
there is no need to compute the individual derivatives of the func-
tions as it is done in the Taylor series method.

Differential transform posses the intrinsic competence to han-
dle nonlinear mathematical challenges. Also, it is applied in solv-
ing ODE’s as well as PDE’s. The DTM in two-dimension was used by
[2] to solve PDE’s. Previous researchers such as [3-6] utilized the
DTM approach to find answers to different problems. The conver-
gence of the DTMwas discussed by [7] and therewas a presentation
of various numerical examples. The use of DTM in solving the non-
linear D.E controlling Jeffery-Hamel flow, where a large magnetic
field existed was done in the findings of [8]. Also, [9] applied the
DTM to find solutions to parabolic PDE’s of fourth-order.

Obtaining approximations which are analytic for non-linear
PDE’s has been arduous up to this present time, although there
are computer softwares and computers whose performances are
high. The regular and homotopy perturbation method was oper-
ational in [10] where they found a solution to the problem of the
yield of heat transfer; as well as suction on the flow of a thin film of
a third grade fluid via a sloped medium that was porous. A math-
ematical model was created by [11] to find the approximate value
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of a natural smoldering log’s temperature, positions and burn rate.
A unique class of Hermite-Pade approximants based scheme was
used by [12] for solving the problem of an optically thin fluid flow,
with variable viscosity via a conduit with isothermal walls. [13]
studied a fluid of third grade that is reactive with a viscosity model
of the Reynold’s type in a flat channel and the elimination of criti-
cality for such fluid.

Magnetohydrodynamics (MHD), as initially presented by Alfvén
in 1970 [14], has to do with causing the formation of current in-
side a fluid in motion that is conductive and surrounded by a mag-
netic field; this induced current causes a force to act on the fluids’
ions. James Prescott Joule’s research in 1841 followed by Heinrich
Lenz’s work of 1842 brought about the discovery of Joule heating--
this phenomenon involves the discharge of heat from a conductor
when a current of electricity is passed through it. The square of
the electric current is in proportion to the quantity of the heat dis-
charged from the conductor. Magnetohydrodynamics (MHD) has
been applied when making the blueprint of cooling networks that
has flowing metals. Also, the making of various flow meters, MHD
generators, pumps and accelerators rely on the use of Magneto-
hydrodynamics [15-18]. These and many other applications made
MHD channels very interesting to researchers; hence, they began
to study it. For example, where the magnetic field of the earth be-
gins and -weather prediction can be interpreted with the help of
MHD. Also, MHD can explain why turbulent shifts of molten semi-
conductors become damped whenever crystals are growing, and it
can be used in food production companies to determine the rate at
which beverages flow [19-21]. The joint influences of slip bound-
ary and Joule heating on the Magnetohydrodynamics third grade
fluid that flow downward of a plane which is tilted, was the center
of consideration in [22,23].

Third grade fluids arematerials displaying qualities of both ideal
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fluids and elastic solids and unveiling partial elastic recovery; af-
ter deformation. Third grade fluids are classified as ‘visco-elastic
fluids’, and they are of great importance when it comes to prob-
lems involving heat transfer. They have various applications in sci-
ence, industry and technology. Hence, many researchers in recent
times have been paying attention to their study. A heat genera-
tion and viscous dissipation model in single dimension for a fluid
of third grade, flowing inside a cylindrical duct was studied by [24]
using the regular perturbation technique. It established an excel-
lent agreement with the results from the finite difference method.
[25] extended this work with the incorporation of Magnetohydro-
dynamics (MHD) together with Joule heating as part of the model,
which was then solved for velocity and temperature, utilizing the
Adomian decomposition method. They concluded that the fluid’s
velocity decreases while there is increase in temperature when
magnetic parameter is varied. Also, the heat generation parame-
ter’s influence is turned around by the joule heating parameter.

Here therefore, we have discussed the DTM approach by which
approximate solutions can be found for the velocity and tempera-
ture of the extended model. Considering the Reynolds’ model vis-
cosity, we compared the results of DTM to the Adomian decomposi-
tion method (ADM) solution. Maple 13 was utilized to execute the
codes generated to determine results.

2. Materials and methods

2.1. Differential transform method essentials
Reckon that a domainA contains an analytical function s(t), and

t = t0 describes any point inside A, where s(t) is a power series
with mid-point at t. The function s(t) has its Taylor series expan-
sion given as:

s(t) =

∞∑
k=0

(t− t0)
k

k!

[
dks(t)

d tk

]
t=t0

∀x ∈ A (1)

When t0 = 0, equation (1) is called a Maclaurin series for s(t);
defined by:

s(t) =

∞∑
k=0

tk

k!

[
dks(t)

d tk

]
t=0

∀x ∈ A (2)

The function s(t) has its Differential transform outlined as:

S(k) =

∞∑
k=0

1

k!

[
dks(t)

d tk

]
t=0

(3)

Here, the transformed function is S(k) while original function
is s(t). An inverse differential transform is given by:

s(t) =

∞∑
k=0

S(k) tk (4)

2.2. The third grade fluid flow model
The fluid is flowing steadily inside a cylindrical duct whose

length is infinite. As depicted by Fig. 1 below.

[26] together with [27] gave the model equations which [28] did
an extension by adding a source term. Adding effect of a magnetic
field as well as joule heating to the model equations gives:

1

r

d

dr

(
r (2α1 + α2)

[
dw

dr

]2)
=

∂p

∂r
(5)

0 =
∂p

∂ϕ
(6)

Figure 1: Flow model in cylindrical coordinate.
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r

d

dr

(
rµ

dw

dr

)
+

1

r

d

dr

(
2rβ3

[
dw

dr

]3)
− σβ2

0w =
∂p

∂z
(7)

K

(
1

r

d

dr

(
r
dT

dr

))
+ µ

[
dw

dr

]2
+ 2β3

[
dw

dr

]4
+QC0

(
T − T 0

)
+ σβ2

0w
2 = 0 (8)

The boundary conditions needed to get a solution to (7) and (8)
are given as

w(R) = T (R) = 0,
dw

dr
(0) =

dT

dr
(0) = 0 (9)

The definition of the model parameters are found in Table 2 be-
low. WhenQ > 0, there is heat generation, whereasQ < 0means
heat absorption. Magnetic effect is represented by σβ2

0w, while
σβ2

0w
2 refers to the joule heating term. To get any ∂p

∂z
, integration

of (7) is carried out and after determining the flow field, equation
(5) and (7) are used to derive the actual pressure field. Themomen-
tum equation is represented by (7) whereas the energy equation is
given by (8).

Using the similarity transformations:
r = r

R
, w = w

w0
, µ = µ

µ0
the non-dimensional equations relat-

ing to (7), (8) and (9) respectively are as follows:

dµ

dr

dw

dr
+

µ

r

(
dw

dr
+ r

d2w

dr2

)
+

Λ

r

[
dw

dr

]2(
dw

dr
+ 3r

d2w

dr2

)
−Hw = C (10)

d2θ

dr2
+
1

r

dθ

dr
+Γ

(
dw

dr

)2
(
µ+ Λ

(
dw

dr

)2
)
+δθ+Jw2 = 0 (11)

with boundary conditions

w(1) = θ(1) = 0,
dw

dr
(0) =

dθ

dr
(0) = 0 (12)

The viscosity model determines the way (10) and (11) looks like,
and µ which is the viscosity is a temperature function by assump-
tion. In this paper we shall use the Reynold’s model viscosity case
which is given by [29] and other works as:

µ(T ) = µ0 exp(−M(T − T 0)) (13)

The fact that increment of temperature reduces Reynolds viscos-
ity for liquids anytime there is a positive value forM , is undisputed.
Also, in the case of gases increasing temperature bring about in-
crease in Reynolds viscosity any time there is a negative value for
M . A large value for M , means we can disregard the influence of
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Table 1: Some basic Differential Transform Method operations.

Original function Transformed function

s(t) = au(t)± bv(t) S(k) = aU(k)± bV (k)
s(t) = u′(t) S(k) = (k + 1)U(k + 1)
s(t) = u′′(t) S(k) = (k + 1)(k + 2)U(k + 2)
s(t) = un(t) S(k) = (k + 1)(k + 2)(k + 3) · · · (k + n)U(k + n)

s(t) = u(t)v(t) S(k) =

k∑
l=0

U(l)V (k − l)

s(t) = u(t)v(t)w(t) S(k) =

k∑
l=0

k−l∑
m=0

U(l)V (m)W (k − l −m)

s(t) = αtm S(k) = αδ(k −m) =

{
1, k = m

0, k ̸= m

s(t) = eη t S(k) =
ηk

k!

s(t) = (1 + t)n S(k) =
n(n− 1)(n− 2) · · · (n− k + 1)

k!
= nCk

s(t) = un(t)vm(t) S(k) =

k∑
l=0

(
n∏

i=1

(l + i)

)(
m∏
i=1

(k − l + i)

)
U(l + n)V (k − l +m)

s(t) = un(t)vm(t)wp(t)
S(k) =

∑k
q=0

∑k−q
r=0

(∏n
i=1(q + i)

) (∏m
j=1(r + j)

) (∏p
l=1(k − q − r + l)

)
U(r + n)V (k − r +m)

W (k − q − r + p)

s(t) = u(t)vn(t)wm(t) S(k) =

k∑
q=0

k−q∑
r=0

[(
n∏

i=1

(q + i)

)(
m∏

j=1

(r + j)

)
U(k)V (r + n)W (k − r +m)

]

s(t) = u(t)vn(t)wm(t)xp(t) S(k) =

k∑
q=0

k−q∑
r=0

k−q−r∑
t=0


(

n∏
i=1

(q + i)

)(
m∏

j=1

(k − r + j)

)(
p∏

l=1

(k − q − r + l)

)
U(k)V (k − r + n)W (k − q − r +m)X(k − q − r − t+ p)



s(t) = un(t)vm(t)wp(t)xv(t) S(k) =

k∑
q=0

k−q∑
r=0

k−q−r∑
t=0



(
n∏

i=1

(q + i)

)(
m∏

j=1

(k − r + j)

)(
p∏

l=1

(k − q − r + l)

)
(

v∏
w=1

(k − q − r − t+ w)

)
U(r + n)V (k − r +m)W (k − q − r + p)

X(k − q − r − t+ v)
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variable viscosity. Carrying out dimensional analysis for equation
(13) we get:

µ = exp(−ρθ) (14)
where ρ is the Reynold’s viscosity variational parameter.
Applying the Maclaurin’s series to equation (14) gives:

µ = 1− ρθ + O(ρ2) (15)
This implies that

µ−1 = 1 + ρθ + O(ρ2) (16)

2.3. The Differential Transform Method (DTM) approach to
model

We can write equation (10) as

d2w

dr2
+

1

r

dw

dr
+ µ−1 dµ

dr

dw

dr
+

Λ

r
µ−1

[
dw

dr

]3
+ 3Λ

[
dw

dr

]2
d2w

dr2
− µ−1Hw = Cµ−1 (17)

Neglecting O(ρ2) in (15) and (16), it implies that dµ
dr

= −ρ dθ
dr

and

µ−1 = 1 + ρθ (18)

Substituting (18) in (17), expanding and collecting terms leads to

d2w

dr2
=

1(
1 + 3Λ

[
dw
dr

]2) [ρdwdr dθ
dr

+ ρ2θ
dw

dr

dθ
dr

− 1

r

dw

dr

−Λ

r

[
dw

dr

]3
− ρΛ

r
θ

[
dw

dr

]3
+Hw + ρHθw+ C + ρCθ

]
(19)

Applying the differential transforms as in Table 1 to (18) the dif-
ferential transform of the momentum equation is

W (k + 2) =
1

(k + 2)(k + 1)

[
1 + 3Λ

k−s∑
r=0

(r + 1)(k − r + 1)W (r + 1)W (k − r + 1)

]
ρ
k−s∑
r=0

(r + 1)(k − r + 1)W (r + 1)θ(k − r + 1) + ρ2
k∑

s=0

k−s∑
r=0

(s+ 1)(r + 1)θ(k)W (r + 1)θ(k − r + 1)

− 1
r
(k + 1)W (k + 1)− Λ

r

k∑
s=0

k−s∑
r=0

(s+ 1)(r + 1)(k − r + 1)W (r + 1)W (k − r + 1)W (k − s− r + 1)−

ρΛ
r

k∑
s=0

k−s∑
r=0

k−s−r∑
t=0

(s+ 1)(r + 1)(k − r + 1)(k − s− r + 1)θ(k)W (k − r + 1)W (k − s− r + 1)W (k − s− r − t+ 1)+

HW (k) + Cδ(k −m) + ρH
k−s∑
r=0

θ(m)W (k −m)− ρCθ(k)

(20)

With boundary conditionW (1) = 0,W (0) = λ, where we can
useW (1) = 0, that is,

n∑
k=0

W (k) = 0 to get the function λ.

Substituting (15) in (11) and expanding gives the energy equa-
tion as

d2θ

dr2
= −1

r

dθ
dr

−Γ

[
dw

dr

]2
+ρΓθ

dw

dr

dw

dr
−ΛΓ

[
dw

dr

]4
−δθ−Jw2

(21)
Applying the differential transforms in Table 1 to (21), we get

the differential transform of the energy equation as

θ(k + 2) = 1
(k+2)(k+1)

− 1
r
(k + 1)θ(k + 1)− Γ

k−s∑
r=0

(r + 1)(k − r + 1)W (r + 1)W (k − r + 1) + ρΓ
k∑

s=0

k−s∑
r=0

(s+ 1)(r + 1)θ(k)W (r + 1)W (k − r + 1)

−ΛΓ
k∑

s=0

k−s∑
r=0

k−s−r∑
t=0

(s+ 1)(r + 1)(k − r + 1)(k − s− r + 1)W (r + 1)W (k − r + 1)W (k − s− r + 1)W (k − s− r − t+ 1)

−δθ(k)− J
k∑

m=0

W (m)W (k −m)


(22)

W (1) = 0

W (2) =
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

W (3) = − 2

3r

(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)
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Table 2: Model parameters definition

Dimensional perpendicular dist. from pipe
axis

Greek symbols

r Dimensionless perpendicular distance from
pipe axis

α1, α2, and β3 Constant material coefficients

R Radius of the pipe β = RT0
E

Activation energy
T 0 The initial temperature ρ = MβT 0 Reynold’s Viscosity

Variational Parameter
w(R) Dimensional velocity component in the axis µ Dynamic shear viscosity
w = w

w0
Dimensionless velocity component in the axis µ = µ

µe
0
or µe

0 =

{µ0 = µ0 exp(T 0)}
Dimensionless viscosity

w0 Dimensional reference velocity ϕ Rotational direction
z Axis of the cylinder θ = (T−T0)E

RT
2
0

Dimensionless temperature
excess

C = R
2

w0µ0

∂p
∂z

Pressure gradient parameter θ =
4µe

0w
2
0

KβT0
Viscous heating parameter

K Constant thermal conductivity Λ =
β3w

2
0

µ0r
2
0

Non-Newtonian material
parameter of the fluid

∂p
∂r

Pressure gradient along the normal to the
pipe axis

δ = QEA0R
2
C0

KRT
2
0

Heat generation parameter

∂p
∂z

Pressure gradient in the axial direction H =
σR

2
β2
0

µ0
Magnetic Effect Parameter

∂p

∂ϕ
Pressure gradient in rotational direction J =

ER
2
σβ2

0w
2
0

KRT
2
0

Joule Heating Parameter
Q Heat generation constant
C0 Initial concentration of the reactant species

W (4) =

1

2
ρ

(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)(
−1

2
δλ− 1

2
Jλ2

)
+

3

4
ρ2
(
−1

2
δλ− 1

2
Jλ2

)2(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ
)

+
1

2r2

(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)
− 1

4r
Λ

(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)3

− 1

4r
ρΛ

[
−8

27r3

(
−1

2
δλ− 1

2
Jλ2

)(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)3

+
4

9r2

(
−1

2
δλ− 1

2
Jλ2

)
(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)3(
−1

2
δλ− 1

2
Jλ2

)
(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)3

+
4

3r

(
−1

2
δλ− 1

2
Jλ2

)(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)3
]

+
1

4
H

(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)3

+
1

4
ρH

(
λ

(
−1

2
δλ− 1

2
Jλ2

)
+

(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)
λ

)
− 1

4
ρC

(
−1

2
δλ− 1

2
Jλ2

)
(23)
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Using the DTM approach the solution to velocity isw = W (0)+ W (1)r +W (2)r2 +W (3)r3 +W (4)r4, that is,

w = λ+

(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)
r2 +

[
− 2

3r

(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)]
r3

+

[
1

2
ρ

(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)(
−1

2
δλ− 1

2
Jλ2

)
+

3

4
ρ2
(
−1

2
δλ− 1

2
Jλ2

)2(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)

+
1

2r2

(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)
− 1

4r
Λ

(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)3

− 1

4r
ρΛ

(
−8

27r3

(
−1

2
δλ− 1

2
Jλ2

)(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)3

+
4

9r2

(
−1

2
δλ− 1

2
Jλ2

)
(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)3

+

(
−1

2
δλ− 1

2
Jλ2

)(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)3

+
4

3r

(
−1

2
δλ− 1

2
Jλ2

)(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)3
)

+
1

4
H

(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)
+

1

4
ρH

(
λ

(
−1

2
δλ− 1

2
Jλ2

)
+

(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)
λ

)
− 1

4
ρC

(
−1

2
δλ− 1

2
Jλ2

)]
r4 (24)

To obtain λ, we substitute the boundary condition W (1) = 0
into (24), the point r = 1, and solve.

Likewise, the scheme (22) is implemented with the Maple soft-
ware, solutions to temperature for k = 0, 1, 2 are:

θ(0) = λ

θ(1) = 0

θ(2) = −1

2
δλ− 1

2
Jλ2

θ(3) = − 2

3r

(
−1

2
δλ− 1

2
Jλ2

)

θ(4) =

1

2r2

(
−1

2
δλ− 1

2
Jλ2

)
− Γ

(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)2

+
2

3
ρΓ

(
−1

2
δλ− 1

2
Jλ2

)(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)2

− 1

4
ΛΓ

(
1

2
Hλ+

1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)4

− 1

4
δ

(
−1

2
δλ− 1

2
Jλ2

)
− 1

2
Jλ
(
1

2
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)
(25)

Using the DTM approach the solution to temperature is θ = θ(0) + θ(1)r + θ(2)r2 + θ(3)r3 + θ(4)r4 , that is,

θ = λ+

(
−1

2
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2
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)
r2 +

[
− 2

3r

(
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)
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2
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2
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(
1

2
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2
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+
1

4
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(
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2
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2
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)
− 1

2
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(
1

2
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1

2
C +

1

2
ρHλ2 − 1

2
ρCλ

)]
r4 (26)

To obtainλ, we substitute the boundary condition θ(1) = 0 into
(26), the point where r = 1, and solve.
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Table 3: Distinction between θmax(DTM) and θmax(ADM) forC with
Γ = δ = ρ = 1

|C| Λ = 1

Present
Result
θmax(DTM)

Iyoko et al. [25]
θmax(ADM)

Absolute
Difference

0.25 0.02154 0.01057 1.097× 10−2

0.5 0.08013 0.04400 3.613× 10−2

0.75 0.16029 0.10500 5.53× 10−2

1 0.24521 0.20000 4.52× 10−2

2 0.50258 1.04000 5.37× 10−1

Table 4: Distinction between θmax(DTM) and θmax(ADM) forΛwith
Γ = δ = ρ = 1

Λ C = −1

Present
Result
θmax(DTM)

Iyoko et al. [25]
θmax(ADM)

Absolute
Difference

0 0.24037 0.14286 9.75× 10−2

0.5 0.24282 0.17143 7.14× 10−2

1 0.24527 0.20000 4.53× 10−2

1.1 0.24568 0.20571 3.99× 10−2

1.5 0.24754 0.22857 1.89× 10−2

3. Results and discussion

3.1. Difference between the DTM and ADM

Comparing the solutions from the DTM and ADM, the tempera-
ture distribution at themiddle of the pipe θ(0) = θmax for DTM so-
lution and Adomian decomposition method solution (ADM) of [25]
are tabulated when H = J = 0. How the two methods vary in
terms of their absolute difference is calculated as well.

The behaviour of the temperature atmid-point of pipewhen |C|
varies from 0.25 to 2.00 is presented in Table 2. The values got-
ten through DTM approach are realistically larger than the ones
fromAdomian decompositionmethod, with the difference increas-
ing from 10−2 to 10−1 as |C| > 1. In Table 3, the non-Newtonian
parameter (Λ) is varied and it is observed that the maximum tem-
perature remain very close; even as Λ increases from 0.00 to 1.50.
The value of θmax(DTM) is greater than those of θmax(ADM) ,
with the difference between the two methods being at most 10−2.
The viscous heating parameterΓ is varied in Table 4, where we see
that the disparity in the values from DTM and ADM increase from
10−2 to 10−1 as Γ > 5. Here, the maximum temperature from
the ADM is a bit higher than that of the DTM. In Table 5 we consid-
ered the variation of heat generation/absorption parameter δ. The
difference between DTM and ADM being 10−2 as δ increases from

Table 5: Distinction between θmax(DTM) and θmax(ADM) forΓwith
Λ = −C = ρ = 1

Γ δ = 1

Present
Result
θmax(DTM)

Iyoko et al. [25]
θmax(ADM)

Absolute
Difference

0 0.0 0.0 0.0
1 0.24282 0.20000 4.28× 10−2

3 0.44343 0.46667 2.32× 10−2

5 0.53658 0.63636 9.98× 10−2

6 0.56805 0.70000 1.32× 10−1

Table 6: Distinction between θmax(DTM) and θmax(ADM) for δ with
Γ = −C = ρ = 1

δ Γ = 1

Present
Result
θmax(DTM)

Iyoko et al. [25]
θmax(ADM)

Absolute
Difference

−0.4 0.15158 0.09091 6.07× 10−2

−0.2 0.16372 0.09859 6.51× 10−2

0 0.17665 0.10769 6.90× 10−2

0.5 0.21130 0.14000 7.13× 10−2

1 0.24521 0.20000 4.52× 10−2

Table 7: Distinction between θmax(DTM) and θmax(ADM) for ρwith
−C = Λ = Γ = 1

ρ δ = 1

Present
Result
θmax(DTM)

Iyoko et al. [25]
θmax(ADM)

Absolute
Difference

−6 0.31395 − −
−4 0.43504 0.70000 2.65× 10−1

0 0.37500 0.23333 1.42× 10−1

5 0.10732 0.12727 2.00× 10−2

6 0.09467 0.11666 2.20× 10−2

-0.40 to 1.00. Also, the values of the DTM solution are higher than
that of the ADM solution. Table 6 shows the difference between the
two solutions as values ofρ is increased from -6.00 to 6.00. Whereas,
there was no defined value for the temperature when ρ = −6
while using the ADM method; a definite value was gotten when
the DTMmethod was used. The θmax(DTM) reduced steadily for
−4 ≤ ρ ≤ 6, but the reduction in θmax(ADM) was sharp.

3.2. Profiles of Velocity and Temperature

When we input different values for each parameter into equa-
tions (24) and (26), the solution for velocity and temperature are
represented through graphs. Here, the x-axis is the pipe radius.
Figs. 2 – 8 represent the behaviour of the velocity whereas Figs. 9
– 15 depict the behaviour of the temperature.

How the pressure gradient parameter C affects velocity of the
fluid is displayed in Fig. 2. As can be seen, the fluid’s velocity is
zero at pipe’s wall for each value of C and then it rises until it be-
comes maximum at the midpoint. Afterwards, it falls rapidly to
zero at the opposite wall of the pipe. As C decreases to -1 from -
0.5, fluid velocity at midpoint of pipe increases (this means that as
fluid continues to flow, lesser pressure is required to sustain the
flow). For the adomian decomposition solution, however, a small
fall inC (from -0.5 to -0.75) reduced the velocity. It only increased
whenC = −1.

Fig. 3 is the behavior of velocity as Non-Newtonian material
parameter Λ varies. As Λ increases, fluid velocity also rises, al-
though their difference is very small and it seems to remain con-
stant. This is the general influence onvelocity causedby increasing
Non-Newtonian material parameter. But, the adomian decomposi-
tion solution depicted a fall in velocity asΛ increases. The case of a
Newtonian fluid (Λ = 0) has the lesser velocity of fluid flow. This
agrees with the fact that nomatter how fast Newtonian fluids flow,
their viscosity remains constant.

When the viscous heating parameterΓ is varied, the flows veloc-
ity profile is shown in Fig. 4. We see that as values of Γ rises, there
tend to be a decrement in velocity at pipe’s mid-point. This tend
to be better than the velocity profile for the ADM, where there was
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Figure 2: Pressure gradient parameter C versus velocity when Λ = J =
H = ρ = δ = Γ = 1.

Figure 3: Non-Newtonianmaterial parameter of the fluidΛ versus velocity
when−C = J = H = ρ = δ = Γ = 1.

Figure 4: Viscous heating parameter Γ versus velocity when−C = J =
H = ρ = δ = Λ = 1.

Figure 5: Magnetic effect parameterH versus velocity when−C = J =
Γ = ρ = δ = Λ = 1.
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Figure 6: Heat generation parameter δ versus velocity when −C = J =
Γ = ρ = H = Λ = 1.

Figure 7: Joule heating parameterJ versus velocitywhen−C = δ = Γ =
ρ = H = Λ = 1.

Figure 8: Reynolds’ viscosity variational parameter ρ versus velocitywhen
−C = δ = Γ = J = H = Λ = 1.

Figure 9: Pressure gradient parameter C versus temperature when Λ =
J = H = ρ = δ = Γ = 1.
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Figure 10: Non-Newtonian material parameter Λ versus temperature
when−C = J = H = ρ = δ = Γ = 1.

Figure 11: Viscous heating parameter Γ versus temperature when−C =
J = H = ρ = δ = Λ = 1.

Figure 12: Magnetic effect parameterH versus temperature when−C =
J = Γ = ρ = δ = Λ = 1.

Figure 13: Heat generation parameter δ versus temperature when−C =
J = Γ = ρ = H = Λ = 1.
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Figure 14: Joule heating parameter J versus temperature when −C =
δ = Γ = ρ = H = Λ = 1.

Figure 15: Reynolds’ viscosity variational parameter ρ versus temperature
when−C = δ = Γ = J = H = Λ = 1.

a fluctuation in velocity of the fluid when Γ = 5 (increasing above
the value for Γ = 3 before reducing at the midpoint).

In Fig. 5 the behaviour of fluid velocity as influenced by themag-
netic effect parameter H is presented. For every H value, the ve-
locity tends to increase rapidly only in a thin layer near the pipe’s
wall. Thereafter, it seems constant for a larger part towards the
center of the pipe. Increasing H causes fluid velocity to decel-
erate; this agrees with the fact that a magnetic field makes non-
Newtonian fluids become semi-solids. The graphs for the DTM ap-
proach looks more refined as compared with those from the ADM-
which depicted negative values for velocity at some values ofH .

As heat generation parameter δ varies, the behaviour of velocity
is shown in Fig. 6. Here, increasing δ brings about an increment in
velocity. As δ increases from 0.00 to 1.00, the maximum velocity
increases accordingly. Unlike the case of the ADMwhere there is a
fall in the value of the velocity before it later increased.

When the parameter responsible for joule heating J is varied,
Fig. 7 demonstrates their corresponding influence on velocity.
From it we seemaximumvelocity happening in-between the pipe’s
mid-point and the pipe wall. Afterwards, it fell in value before get-
ting to themid-point of pipe. IncreasingJ from5 to 10, the velocity
decreases, but further increase in J caused velocity to increase at
the pipe’s mid-point.

Fig. 8 depicts the influence of Reynolds’ viscosity variational pa-
rameter ρ on velocity of flow. Clearly, as there is an increment in ρ,
we see the pipe’s mid-point velocity deceasing. The difference in
value of velocity between ρ = 0 and ρ = 4 is quite large compared
to that between ρ = 4 and ρ = 8. Here also, the DTM approach
gives a better progression in velocity with increase in ρ than what
ADM gives.

Fig. 9 presents to us the behaviour of the fluid temperature as
pressure gradient parameter C is varied. It reveals that a more
negativeC , results in an increment in the temperature at thepipe’s
mid-plane. There is a regular difference of 0.05 in the maximum
temperature as C moves from C = −0.5 to C = −1; unlike the
case of the ADM solution, where there is a very sharp difference in
maximum velocity with varying C .

In the graph depicting how Non-Newtonian material parame-
ter Λ influences fluid’s temperature, that is, Fig. 10; increase in
Λ causes temperature at mid-point of the pipe to increase. This is
what is generally accepted as the influence ofΛ on temperature of
non-Newtonian fluids. But, the ADM solution gives a reduction in
temperature with increase in Λ.

Fig. 11 represents the influence of the viscous heating param-
eter Γ, and it shows that the fluid temperature increases as Γ in-
creases. The viscous heating parameter Γ acts as a source of heat,
it therefore, generally increases fluid temperature.

When the magnetic effect parameterH rises there is reduction
in the fluid’smaximum temperature (Fig. 12). Although, physically
increasing the magnetic parameter corresponds to increase in the
resistive force, which in turn increases temperature. The result
here becomes interesting, and could be because of the presence of
joule heating or heat generation.

The heat generation parameters’ effect on behaviour of fluid
temperature is depicted in Fig. 13. As heat generation parame-
ters (δ) increases, temperature seems to increase at midpoint of
pipe. There is increase in temperature along the wall, which then
reaches a maximum at the pipe’s center for each δ value.

From the influence of the joule heating parameter (J ) repre-
sented in Fig. 14, increment in J brings about a fall in the fluid’s
maximum temperature. Explanation for this behaviour could be
because heat generation already exists.

The final parameter to consider is the Reynolds’ viscosity varia-
tional parameter ρ. Its effect on fluid temperature is shown in Fig.
15, which reveals that the pipe’s mid-point temperature reduces
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as ρ becomes larger. When the viscosity of the fluid is constant
(ρ = 0) the temperature records its highest value.

4. Conclusion
Here the model equations of an MHD flow of a third grade fluid

was solved by applying the DTM approach. Mapple (13) was used
to get an analytic polynomial result to fluid’s velocity as well as
temperature. Each of the parameters arising in the flowwas varied
and the behaviour of the fluid’s velocity and also temperature was
shown graphically. Conclusions are thus:

1. DTM solution converges faster than the Adomian decomposi-
tion method (ADM) solution.

2. The magnetic effect parameter brings about reduction of the
fluid’s velocity and temperature.

3. Very high joule heating parameter increases fluid’s velocity
while its increase reduces the fluid temperature.

4. Both velocity and temperature experience an increase for neg-
ative values of the pressure gradient parameter.

5. Decline of the fluid’s velocity as well as temperature occurs
with increment of non-Newtonian material parameter.

6. There is a decrease in velocity for increased viscous dissipa-
tion parameter, and it, on the other hand, increases tempera-
ture.
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