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Abstract
In this paper, we propose evolutionary deviant learning system (evoDLA) for optimal power generating systems. It is a temporally structured
learning system for the predictive cost minimization task at the next time step expressed in a semantic way. Cost minimization in power gener-
ation is an assignment problem that requires the determination of the best set of operating parameters to enable generators perform optimally.
Presented as an alternative to the conventional unit commitment strategies, the predictive system is designed to operate in a semi-supervised
manner allowing the dynamic superimposition of linguistic memory units into the mixed-integer power system generation data. A set of rep-
resentative linguistic biased integers are programmed into an equivalent fuzzy-like integer representation. These are transformed through a
series of temporal deviant states and then re-transformed back into true linguistic form. Simulation studies are performed in comparison with
the Long Short-Term Memory (LSTM), a proven artificial neural network (ANN) method for sequential learning tasks. The results show com-
petitive performance with the present system and the unique capability of the novel system in inferring the optimal set of output generation
parameters.

Keywords: Deviant learning; Optimal power generation; Cost minimization; Unit commitment; Predictive system; Mixed integer programming

1. Introduction

The problem of cost minimization in power systems genera-
tion has been an active area of research till this day, and is a
consequence of the unit commitment problem (UCP) which de-
fines the requirement of finding the optimal schedules for a set
of power generating units and their corresponding generating lev-
els [1]. This also has considerable impact on the effective utiliza-
tion, efficiency and forecast planning of power system generat-
ing and distribution stations. Some notable contributions in this
field has been well documented in [2-4] based on mixed-integer
programming; [5] and [6] using column generation approach and
Zareipour et al. [7] by forecasting unit commitment using the price-
responsive loads approach.

More recent efforts at solving the cost minimization problem
has been researcheduponwith reasonable degrees of accuracy. For
instance, artificial intelligence models have been developed that
prescribe a solution based on a global solution space [8]. In [9], the
use of genetic algorithms withMonte Carlo simulation for schedul-
ing power outputs in a distributed generation have been carried
out; Tan et al [10] used body immune algorithms for the power sys-
tem schedule optimization task, and adaptive capacity unit com-
mitment models have been implemented in [11]. Also, in a related
research Deep recurrent neural networks have also recently been
used in power markets with a focus on optimum storage, power
efficiency, and load forecasting [21-23]. An extensive review of re-
cent approaches can be found in [12].

As a consequence of these approaches, optimal power flow (OPF)
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programming software tools have been developed using ANNs and
applied to an African powermarket [13]. The capacity (MW/MVAR
loading), consumer demand satisfaction, time up/down and ramp
constraints [17] are pertinent issues that are likely to be faced by
the power system economic schedule managers. Thus, more ro-
bust solutions are required that handle the complexities inherent
in multiple constrained problems. A typical solutions approach in
this regard have also been attempted as in [17].

However, as argued in [15] true AI schemes must account for
temporal states and in addition, a large number of synaptic learn-
ing units. Computing with words (CWW) also presents a possible
approach for semantic understanding and reasoning which is lack-
ing in most inference learning systems used in power systems cost
minimization; the concept of true computing with words (CWW)
has already been described in [14 and 15] and alsomore recently in
[16] with promising ideas for actual real world implementations.
Thus, a model for predictive and semantic cost minimization of
power system generation is lacking in the literature.

The primary purpose of this paper is to develop a predictive in-
ference learning system based on a novel cortical learning algo-
rithm – the Deviant Learning Algorithm (DLA), with semantic ca-
pabilities for predictive cost minimization in the Nigerian power
market. In particular, we focus on the temporal optimization of
power system load schedules where we are interested in determin-
ing at the next time step, the optimum generation schedule in MW
for a set of power system generation plant. Our proposed system
model can semantically handle linguistic variables as well as nu-
meric variables chunk-by-chunk or one-by-one aswell as avoid the
direct computation of the Lagrangianwhen not needed i.e. our sys-
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temcan further optimize the Lagrangian approach using amemory
prediction framework (the DLA) and in addition this has the poten-
tial to reduce the cost of processing in an OPF programme. The
DLA fulfills the principle of sparse distributed representations, bi-
directional activation propagation, inhibitory competition, error-
driven learning task andHebbian learning in a biologically realistic
way [19]. The LSTM algorithmhave been shown to performwell on
sequence learning tasks [24-26]. However, it remains to be proven
if it has semantic/or linguistic capabilities for predictive power sys-
tem optimization tasks.

The contributions of this study are as follows:

• The development of a novel theoretical framework/algorithm
(evo-DLA) for semantic reasoning and prediction of optimum
power system plant generation schedules.

• The comparative evaluation with an existing state-of-the-art
neural prediction algorithm.

This paper is structured in the following order. Section 2 presents
the proposed systemmethodology including the guidingprinciples
based on theDLA. Section 3 provides the experimental details and a
brief discussion of the results, while Section 4 concludes this paper.

2. Methodology for predictive cost minimization of
power systems generation

The unit commitment problem is generally defined as [1, 2]:

min (Ocosts) =
∑

{Fcosts, Icosts} (1)

where,
Fcosts: fuel costs
Icosts: start-up costs
Ocosts: operational costs
For the scheduling aspect we are interested in determining the

best (minimal) switching time settings of generator unit(s) that sat-
isfies the consumer load demand specifications at minimal produc-
tion costs so (1) gives a general representation of this problem. Due
to complexity requirements largely due to the hours taken for an-
alytic processing of required minimum cost of operation, a refor-
mulation based on a Danzig-Wolfe decomposition have been used
by power system researchers [6]. Basically, this assumes a con-
stant unit commitment in a reformulated unit commitment prob-
lem for diverse use case scenarios. However, this simplification do
not work well in practice as unit commitment is largely variable.

2.1. Systems architecture description

Following a data flowmodeling paradigm, themodified architec-
ture for predictive cost minimization accounting for power system
generation variability and semantic compliance is as shown in Fig.
1.

The system is basically a two station power generation system.
Twomanual entry blocks (Power user load stations – stations 1 and
2) are used to model real world power demand from consumers; it
is expected that the power generating stations should optimally
deliver power to the respective load stations. The attribute vari-
ability block captures the case of real-time or hypothetical power
changing values in the system. These values are then function-
fitted by a Lagrangian optimizer block with the primary purpose
of synthesizing the optimal power generation schedule for the sys-
tem under study.

Due to the variation in load demand and changing load profile
the optimal load schedules will also vary. This has to be accounted
for in the predictive system. We have succeeded in handling this
issue by using a recurrent column generation program similar to

that used in Shiina and Birge [2], but rather than storing the de-
mand data in a list prior to processing, it is temporally adapted (on-
line processed and by virtue of delay blocks) and the optimal states
are only stored. This optimal states are also adaptively described
in a semantic way using a semantic encoding block. For instance a
power value greater than 100MW may be defined as high or very
high. The predictive processor block uses the DLA to predict at the
next time step, themost probable power systems generation sched-
ule (see Fig. 1). An operator block has been added to provide an
inhibitory effect on the changing load profile and power demand
output functions (assumed to be active at time step, t) based on an
optimal state decision block (controlled through semantic optimal
power schedule requests). The output of this block is active when-
ever a prediction is not found from the predictive processor; it is
inactive otherwise.

2.2. Condition for minimal unit production costs

In order to comprehend the principle of economic operation of
power systems generator units, a knowledge of the conditions nec-
essary for least costs of production. This is fundamentally based
on the principles of cost change with respect to power generated
as:

∂Ocosts(i)

∂P(i)

= ki · P(i) + li (2)

For a given schedule at time, t, these costs vary depending on the
switching state of the generator unit (ton/toff). Thus, at particular
instant in time, we desire the unit that will give the net least possi-
ble state for a given scenario, say load demand. With respect to the
Lagrangian multiplier, this demands an equal incremental costs of
production for the units in concern:

∂Ocosts(i)

∂P(i)

=
∂Ocosts(i−1)

∂P(i−1)

(3)

2.3. Accounting for transmission losses in power systems
generation

To effectively model the coordination of incremental produc-
tion costs, we need to account for transmission losses due to
the system generation; real world power generation units always
present some system losses in the course of its operation.

The Lagrangian equation of constraint accounting for transmis-
sion power losses is expressed as [18, pp.385-387]:

Ψ(P1, P2, . . . , Pn) =

n∑
j=1

Pj−PL−PR =
∑

Pj−(PL + PR) = 0

(4)
For Ct to be a minimum,

∂Ct(i)

∂Pj(i)

− λ
∂Ψ

∂Pj
= 0 (5)

The expression,

λ
′ ∂Ψ

∂Pj
≡ 1− ∂PL

∂Pj
(6)

from which,

λ
′
=

∂Cj

∂Pj

{
1− ∂PL

∂Pj

}−1

Cj(t) (1− σj)
−1

(7)

The term (1− σj)
−1in eq. 7 is referred to as the penalty factor

for station j.
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Figure 1: Proposed architecture for predictive cost minimization of power system generation.

2.4. Power system load scheduling

Given a system of power system generator sources, a convex
quadratic function describing the costs of production in terms of
the unit generation may be expressed as:

Ct(i) = a ∗ P 2
t(i) + bt(i)Pt(i) + k (8)

(9)
Considering equal power scheduling across all units,

Cequal(t(i)) = a ∗ P 2
equal(t(i)) + bt(i)Pequal(t(i)) + k (9)

where,

Pequal(t(i)) =
PR

n
(10)

The differential response of eq. 8 is represented as:

C
′
t(i) =

∂Ct(i)

∂Pt(i)

(11)

from which we solve for the optimal power generation at time,
t, as:

Pt(i) =

{
C

′
t(i)

}
Pt(i)

(12)

Thenet savings or lossmay be computed by substituting (13) and
(11) into (9) and (10) respectively, and then taking the net differ-
ence as:

Cnet(t(i)) =
∑(

Ct(i) − Cequal(t(i))
)

(13)

Positive values ofCnet(t(i))imply a cost savingwhile negative val-
ues indicates a loss.

In practice,Ct(i) is derived from a polynomial curve-fitting pro-
cess using a suitable technical computing tool. Ct(i)is expected to
vary slowly over the expected time interval and based on thepower
demand requirements.

2.5. Predictive cost minimization (PCM) using the DLA con-
cept

In order to comprehend themethodology of PCM, we restate the
UCP as a temporal sequence learning problem as follows where we
do not want the unit commitment schedule to be constant. We de-
fine a scenario as a constrained set of generation parameters (fuel
costs and loading) where the power demand is initially also de-
scribed in linguistic terms (high, low, moderate etc.) by the expert
user. For a given time instant, a different set of generation param-
eters is evolved. This process is repeated for several instances of
time. An extension of the DLA’s predictive capability is then used
to perform numeric predictions in a backward additive manner as
follows:

1. Train a temporal DLA state observerwith a temporal sequence
of optimal exemplars using the values obtained in (13) – see
subsection 2.1.3. This generates a memory of deviants using
the SDR architecture proposed in [20]

2. Using the nth prediction in step 1 as a deviant and the previ-
ous (n-1) deviants as standards performanaggregateddeviant
operation as:

Kt
avg =

∑n
j=1

(
Kt

n −Kt
seq
)

n
(14)
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1. Using eq. 10, compute the deviants numeric prediction as:

Kt
p = Kt

avg +Kt
n (15)

2.6. Automatic programming and the DLA

Automatic programming is achieved by inducing grammatically
correct structures in DLAmemory system by using an adaptive and
dynamic sparse distributed temporal representation (SDTR). With
the STDR procedure, it is possible to implement key neural func-
tionality – mismatch, overlap learning, reinforcement, and policy
conditioning with an evolvable state in both software and eventu-
ally in hardware through special interfaces. Because the DLA en-
courages string to integer and integer to string transformations,
character by character language encoding and semantic coding
schemes is also possibility.

3. Results and discussion

3.1. Data for Experiments

Sample data for initial experiments have been obtained from the
PowerHolding Corporation of Nigeria (PHCN) and focus on two key
injection stations in Port-Harcourt (PH) metropolis: the PH MAIN
(22) and PH MAIN (24) T/S. This data is based on weekly daily load
utilization and allocation obtained from 2009 to 2012. The maxi-
mum possible allocation is estimated to be approximately 210MW.
The parameter ranges of the DLA (Table A1) and LSTM (Table A2)
for the simulations is given in Appendix A. Synthesized power data
for the experiments is given in Appendix B.

3.2. Experiments

Experimental studies is based on the architecture of a 2-bus
power systemdescribed in [18]. Experiments have been performed
in two parts; for both algorithms, the results are generated using a
text processing programme i.e. the data are transformed into a tex-
tual representation prior to training and learning. The tasks here
is to determine if the DLA and LSTM can correctly infer the next
probable optimum power generation setting and as well perform
multiple predictions. Technically, multiple predictions are possi-
ble when there is a high likelihood that two or more sequences are
repeated in the learning model’s current memory.

For the first part we compare the predictive abilities of the DLA
with the LSTM model at default specification settings for the pre-
dictive cost minimization sequence learning task based on a pre-
generated list of optimal power generation for the two stations un-
der study. The power demand is set to vary randomly between
30MW and 210MW and the optimal sets of power generation re-
cursively computed and trained using the scheme described in the
previous section. Numeric results comparing the two models are
shown pictorially in Tables 1 and 2 for the DLA and the LSTM re-
spectively. For the second instance a linguistic label is attached to
each optimal value (lingual-embedding) and the system is re-run.
Due to the generative nature of the LSTM, two captures were per-
formed. The results are shown (for first bus only) in Table 3 for the
DLA and in Tables 4 and 5 for the LSTM.

For the second part, the DLA is tuned for different learning ex-
tents to determine its stabilization capability on the semantic cost
minimization task. This task is essential in understanding how the
DLA temporally processes data and to determine when multiple
predictions occur. Simulations for learning extents from a value of
116 units to 125 units are performed in increments of 1 unit. This
is shown in Fig. 2.

Table 1: Textual representation of linguistic prediction memories and cor-
responding combined future memories for the DLA.

S.N. Linguistic
Memories (Bus 1)

Linguistic
Memories (Bus 2)

1 200000000000 30.68
2 3.34 21.65
3 31.05 46.92
4 31.08 46.92
5 31.48 47.52
6 18.93 30.07
7 25.7 40.3
8 31.08 46.92
9 31.16 47.04
10 34.67 52.33
11 12.75 19.25
12 12.55 18.95
13 12.75 19.25

Future
Memories

12.75 19.25
11.8167 46.92

Table 2: LSTM Model Prediction Memories and corresponding greedy
argmax prediction.a

S.N. Linguistic
Memories (Bus 1)

Linguistic
Memories (Bus 2)

1 19.93 30.07
2 31.48 19.25
3 31.16 19.25
4 20.32 18.95
5 19.93 52.33

Future
Memories

31.08 46.92
12.75

aargmax is based on a greedy prediction scheme used in deep re-
current LSTM networks
Table 3: Textual representation of linguistic prediction memories and cor-

responding combined futurememories for the DLA for the seman-
tic encoding task.

S.N. Linguistic
Memories (Bus 1)

Interpretations

1 20.32 Low
2 14.35 Very Low
3 31.08 Moderate
4 31.08 Moderate
5 31.48 Moderate
6 19.93 Low
7 26.70 Moderate
8 31.08 Moderate
9 31.16 Moderate
10 34.67 Moderate
11 12.75 Very Low

Future
Memories

12.75 Very Low
31.08 Moderate

Table 4: First captured LSTMModel Prediction Memories and correspond-
ing greedy argmax prediction for the semantic encoding task.

S.N. Linguistic
Memories (Bus 1)

Interpretations

1 12.75 Moderate
2 12.75 Moderate
3 19.93 Very Low
4 12.75 Very Low
5 12.55 Moderate
Future
Memories

12.75 Very Low
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Table 5: Second captured LSTM Model Prediction Memories and corre-
sponding greedy argmax prediction for the semantic encoding
task.

S.N. Linguistic
Memories (Bus 1)

Interpretations

1 31.08 Very Low
2 31.48 Very Low
3 19.93 Moderate
4 31.1 Moderate
5 31.16 Very Low
Future
Memories

31.08 Moderate

Figure 2: Histogram plot of the DLA’s predictions for the semantic cost
minimization task with varying learning extents for Bus 1.

3.3. Discussion

Interestingly, the two predictive systems delivered similar re-
sults.

For the first experiments, the LSTM and DLA results are com-
petitive with the DLA remembering most (with more memory el-
ements in its recognition list; Table 1) and performing multiple
predictions on both buses while the LSTM remembering least and
was unable to performmultiple predictions on second bus (Table 2).
This effect can be attributed to a phenomenon called the “perplex-
ity” which determines the degree of surprise seen by a predictive
network at its next prediction move. For the semantic part of the
first experiment, the results are more challenging due to the need
to learn both words and the numeric predictions. However, both
algorithms still fared reasonably well on the task at hand with the
DLA accumulating all learned recognition in a single capture (Ta-
ble 3) while the LSTM required two possible captures for learning
the most likely predictions (Tables 4 and 5).

For the second part of the experiments, variations are observed
for learning extents less than 121 units. However, the DLA learning
network starts to stabilizewith learning extents from 121 (5) to 125
(9) – see Fig. 2. Thus, increasing the learning extent improves the
stabilization ability of the DLA.

4. Conclusion and recommendations
Predictive power systems cost minimization for a 2-bus power

generation system have been performed using data from a case
study area in Nigeria with optimal power data obtained using a col-
umn generation approach and semantically transformed to make
it more intuitive. The generated optimal power plans is then fed to
two predictive AI models (the DLA and LSTM) for comparative pre-

dictive simulation of the most likely future power schedule for the
study location. The DLA showed a competitive performance when
compared with the LSTM network for the optimal sequence learn-
ing task andwas able to outperform the LSTM on the second bus. It
also requires the tuning of a single parameter which is more cost-
effective than conventional deep learning algorithms. In addition,
using the presented approach with variational learning extent, it
was possible to temporally evolve a sparse set of optimal power val-
ues and store them later on for semantic predictions. The proposed
approach can be useful as a compensatory predictive tool in power
systems optimization tasks to reduce the cost and computational
expense of the Lagrangian and other conventional mixed-integer
programming approaches.
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Appendices

A. Parameters for the LSTM and the DLA

A1. LSTM parameters.

Parameter min Max
Hidden sizes 20×20 20×20
Character size 5 5
Learning Rate 0 0.01
L2 Regularization
Strength

1E-06 1E-06

Clip Value 5E-06 0.05
Softmax sample
temperature

0 0.1

A2. DLA parameters.

Parameter min max
Learning extent 121 125
Time limit 10 10
Initial permanence
value

0 0

Store threshold 120 120
Tolerance
constraint

0.05 0.05

B. Synthesized optimal data for experiments

B1. Sequence training data.

Time Sequence Optimal Power
Values (Bus1)

Optimal Power
Values (Bus2)

20.32 30.68
1 14.35 21.65
2 31.08 46.92
3 31.08 46.92
4 31.48 47.52
5 19.93 30.07
6 26.7 40.3
7 31.08 46.92
8 31.16 47.04
9 34.67 52.33
10 12.75 19.25
11 12.55 18.95
12 12.75 19.25
13 12.75 19.25
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