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ABSTRACT  
We exhibit two procedures to express x

n
 in terms of the shifted Chebyshev polynomials, which is 

useful to reduce the degree of a polynomial in the interval [0,1]. 

 

Keywords: Chebyshev-Lanczos polynomials 

INTRODUCTION 
In numerical analysis may be necessary to reduce, with small error, the degree of a polynomial in the 

interval [0, 1], which is possible employing the Modified Chebyshev polynomials )(xT r  defined by 

[1]: 
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where the first-kind Chebyshev polynomials )(xTr
 are given by the recurrence relation [2-6]: 
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In the mentioned reduction process we need the powers x
n
 in terms of rT , then from (3): 
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that is [1]: 
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The next section exhibits an algorithm to obtain x
j
 in function of rT  if we know the corresponding 

expansion of x
j-1

, and also another procedure which employs to (5) as a Newton’s binomial expression. 

 x
n
 in terms of rT  

We may write (5) in the form: 
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or in function of the columns vectors ))4(
2

1
( j

x  and )( rT  for a  given n: 
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where 
~
A  is the )1( +n x )1( +n  triangular matrix of coefficients appearing in (6): 
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 reproduces (3). 

The relations (5) and (7) imply that: 
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thus 

 jraa jrjj >== ,0,1  (10) 

and we can prove the following properties not found explicitly in the literature: 

 
,...3,2,1,,2

,...2,1,0),(2

1,1,11,1

100,1

=++=

=+=

+−−−−

+

jraaaa

jaaa

rjrjrjjr

jjj
 (11) 

The formulae (11) permit to construct the row j of 
~
A  if we know its row j-1, and they represent an 

algorithm to express x
n
 in terms of )( rT  whose systematic use minimize the amount of arithmetical 

computations involved in (5). 

On the other hand, the expansion (5) can be written as: 
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where we use the notation: 

 ,...2,1,0,,...,2,1,0 =≡==
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very employed in Gregory-Newton and Stirling interpolations [7]. 
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Thus (12) adopts the form of a Newton’s binomial expression: 
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which is a procedure alternative to (11) to obtain x
n
 in function of rT . For example: 
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in according with (6). The relation (14) may be easily manipulated by a computer via some symbolic 

language as MAPLE. 
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