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ABSTRACT
In this paper, we establish a fixed point theorem for a pair of self maps satisfying a general
contractive condition of integral type. This theorem extends and generalizes some early results of
Boikanyo[2].
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1. INTRODUCTION

The first well known result on fixed points for contractive map was Banach — Cacciopoli
theorem, published in 1922 (see [1], [4]). In general setting of complete metric space, Smart
([11]) presented the following result.

Theorem 1.1. Let (X, d) be a complete metric space, ce [0, 1), and let T: X — X be a map
such that for each x,ye X,

d(Tx,Ty)< cd(x, y)

Then, T has a unique fixed point ze X such that for each xe X, lim7T"x=z.

n—so0

After this classical result, many theorems dealing with maps satisfying various types of
contractive inequalities have been established (see for details [2], [5]-[10], [12]).
In 2002, Branciari ([3]) obtained the following theorem.

Theorem 1.2. Let (X, d) be a complete metric space, ce [0,1), and let 7: X — X be a map such
that for each x,ye X,

jd(Tx,Ty)

0

@(1)dt < cjod(x'y)(p(t)dt
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where @:R™ — R" is a Lebesgue - integrable map which is summable, non negative and such
that .[:(o(t)dt >0 for each £>0. Then, T has a unique fixed point ze X and for each xe X,

im7"x=z.

n—eo

In 2007, Boikanyo [2] proved some fixed point theorems for a self map satisfying a general
contractive condition of integral type as an extension of Branciari’s theorem. In [3], it was
mentioned that one can generalize other results related to contractive conditions of some kind,
such as in [8].

The main purpose of our paper is to obtain some results for a pair of self maps satisfying a
general contractive condition of integral type.

Throughout this paper, N denotes the set of natural numbers.

2. Main Results
Theorem 2.1. Let ( X, d ) be a complete metric space. Let q, (i = 1,2,3,4,5) be non negative real

5
numbers satisfying Za[ <1, T,and T, be a pair of self maps of the metric space X such that for
i=l

eachx,ye X

.y) d(x,Tx)
@ (t)dt+a2.[o o (t)dr

+ a3j A0) @(t)dt+ a4j Ae ) @ (t)dt+ aSJ.

0

I:(Tlx,Tz}') @ ([)dt < Cll.[

d(x
0

d(y.Tix)

o(1)dt (2.1)

0 0

where @ :R" — R" is a Lebesgue-integrable map which is summable, non-negative and such
that J. ) @ (t)dt >0for each £>0. Then 7| and T, have a unique common fixed point z€ X .
0

Proof. Let x, be any point of X .

Define x,, ,=Tx,,,

x,, =T,x,,, where ne N

n

We claim that limd(x,,x,,, )=0.

n—>o0

n+l

(2.2)
To prove (2.2), we require to show that

d(xg.%)

I:(x,,,x,,+l)¢ (t)dtSr”Io o(1)di where r = 2a,+a, +ay+a, +a

<1

—a,—a,—a, —ds
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For this, by interchanging x with y and 7, with7, in (2.1), we obtain

I d(Tyy.Tix) y)

d(y.x) d(y.T,
. @ (t)dtéaljo ' (0(t)dt+a2.[o (1) di
+a3'|':(X’T'X)(p(t)dt+a4J'd(y’T’x)qo(t)dHaSJ'

0
Now, from (2.1), (2.3) and using symmetric property, we obtain

d(Tx.Toy) d(x.y) a,+a d(x.Tix) a,+a d(y.1>)
jo ’ ¢(t)dt£alj0 ’ ¢(t)dt+(%jj0 (p(t)dt+(%jjo (1) dt

d(x.T,y)

o(t)dt (2.3)

0

2 0

a,+a d(x.Ty) a,+a d(y.Tix)
+(ij‘0 ¢(t)dt+(%)j @ (1)dt (2.4)

Using (2.4) for odd n, we obtain

J'd(xn:xnﬂ)(o(t)dt :J-

0

d(Tlxn—l Tx, )

o(r)dt

0

< al.[:(x"l'x")(p(t)dt+(a2 —;aS jJ-:(xnl.Tlxnl)q)(t)dt_i_(az +a, jj d(X"’TZX")(p(t)dt

2 0

a, +as | rdxanhy) a, +as | dx0x5.)
+(Tjj0 ¢(t)dt+(Tjj0 o(1)dr
d(xm15%,) a,+a (%1 o%) a,+ta (5 %1
=alj'0 ¢(t)dt+(%jjo (p(t)dt+(%jj- @(1)dt

a, + as (%, %) a, + ds d(x,.x,)
J{Tjjo ¢(t)dt+(Tjj0 o(1)dr

Again, using (2.4) for even n, we obtain

J'd(xn:xnﬂ)(o(t)dt :J-

0

d(sznfl 'Tlxn) ¢(t) dt

0

< alj:(xn—l»xn)¢ (t)dt+(a2 —;a3 jjj(xn—l’szu—l)¢(t)dt+(az —503 jj d(x/xjixu)¢(t)dt
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a,+a (%, %01 a,ta d(x,.x,)
+(ijo (/)(t)dt{%jj'o o(r)dt

2

From the above two cases, one can see that

jd(x”’x”“)(p(t)dt < alJ» d(xn-l,xﬂ)(o(t)dt_l_(az—;-%jj» d(x”_l,xn)¢(t)dt+(a2—+a3jj d(x”’x”+1)¢(t)dt

0 0 0

a,+a d(x,4.%,4) a,+a d(x,.x,)
+(ijo (/)(t)dt{%jj'o o(1)dt

2

< alj:(xn_]’xn)w(t)dt+(a2 +a3 jj:(xu—l’xu)¢(t)dt+(az +a3 )J':(Xn’xnﬂ)¢(t)dt

2

+(MJJ':(X"lvxn)¢(t)dt+(a4—'i'a5jj‘:(xn,xn+l)¢(t)dt

2 2

Tt follows that j:(xnvxn+1)¢(t)dt < [Zal +a2 +a3 +Cl4 +a5 jj d(xnilyxn)Q(t)d[

— — — — 0
2—a,—a,—a,—as

_ rJ' d(x""’x")(p(t)dt

0

n d(x,xl) . .
Sr_[o ’ q)(t)dt—)O as n—oo since r<Il, owing to the

5
assumption Zai <1. Therefore, limd(x,,x,,)=0.

Py n—o
Now, we show that {x, } is a Cauchy sequence in X. Let m > n where m,ne N

Without any loss of generality, two cases arise:
(1) m is even when n is odd
and (ii) m is odd when n is even.
Case I: We choose n and m to be odd and even respectively

Then we have

d(nxn—] ’TZXm ])

[t~ oty

< alj ) o(1)dt+ azj

0

d(x,.Tix, ) ¢(I) di + a3J' d(x,.T5%, ) ¢(t) dt

d(xm—l X, )

0 0

d(xnfl X )
‘a,[

¢(t)dt+a5j

0

d(x,1.%,1) d(x,.x,) d(x,1.%,)
:alj'0 go(t)dt+azj' go(t)a’t+a3j0 @(r)drt

0
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(%1 %) (%ot %)
+a4j'0 (p(t)dt+asj' o(r)dt

0

Case II: We choose n and m to be even and odd respectively.

Then we have

d(x,%,) d(Ty%, g Ty Xy
[ g (eyde = olr)dr

0

(%, X)) d(x, . Tyx, ) (% T 1)
S“JO ¢(t)dt+a2J- go(t)dt+a3j o(r)dt

0 0

d (%, T, ) d(x,.Ty%, )
+a4j0 (p(t)dt+a5_[ @(1)dt

0

d(x,1.%,1) d(x,.x,) d(x,1.%,)
:al.[() ¢(t)dt+a2_[ ¢(t)dt+a3j @(1)dt

0

d(%m15%n) (%1%,
+a4j0 ¢(t)dt+a5j o(r)dt

0
From both the cases, we have

d(x,.x,) d(x,.%,,) d(x,.x,) d(x,1.%,)
jo q)(t)dtﬁaljo (p(t)dt+a2j (p(t)dt+a3j o(1)dt

0 0

d(x,4.%,) d(x,.x,)
+a4jo (p(t)dt+a5_[ o(1)dt

0

d(x,1%,) d(x,.%,) d(%y31)
S“JO (0(t)dt+a1j0 ¢(t)dt+a1j0 o(r)dt
d(x,1.%,) d(150) d(%,.%,)
+a2J-O ¢(t)dt+a3j-0 (p(t)dt+a4jO o(r)dt

(%1%, (%1 %) d(x,%,)
+a4j0 (p(t)dt+a5_[ (p(t)dt+a5j @(1)dt

0 0
Therefore

| : " (1) di < (—al T, 14, jj d(x""’x”)(ﬂ(t)dt{m] (o) i

0 — — —
a,—a, —as

< m rn_ljd(Xo:X1)¢(t)dt+ m rm—ljd(ﬁm.xl)¢(t)dt
l1-a,—a, —a 0 1

— — — 0
a,—a, —as
— 0 as n,m — oo, since r<1

Hence, {x,} is a Cauchy sequence in the complete metric space X, so it is convergent in X.
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Let its limit be z, i.e. limx, = z. We show that T,z =T,z =z.

n—oo

Now, we have

d(xy,.T2) d(Tyxy,1.132)
_[0 ¢)(t)dt:j0 ¢(I)dt

d(x31,T2X21) d(z,1z)

< alj e @(t)dt+ aZJ-

. ¢(t)dt+a3j' @(r)dt

d(Z’TZXZrﬁ] )

0 0

J' d(xy,1.12)

+a,| ¢(t)dt+a5j o(r)dt

0

d(z.Tz)

d(xy,.2) (X3, %2,)
=a1_[0 (p(t)dt+a2j (p(t)dt+a3j

0

o(1)dt

0

d(Z’XZ/x )

d('XZ/x—] ’le)
+a, |
0

(p(t)dt+a5j o(1)dt

0

Taking the limit as n — oo, we get

d(z,12) d(z,1z)
J' p(r)de < a3j'0 (0(t)dt+a4j

0

d(z,1}2)

o(r)dt

0
d(z,1}2)
= J'O @(r)dr=0

=>z=1z
Similarly, it may be shown that 7,z = z. Thus 7, and 7, have a common fixed point.
For uniqueness, if possible, let w be another common fixed point of 7, and 7, such that w# z.

Now, we have
d(z,w) d(Tiz,Tow)
J'O ¢(t)dt:I0 o(r)dt

d(=1;2) d(wTyw)

d(z,w)
S“JO ¢(t)dt+azjo ¢(t)dt+a3jo @(r)dt
d(z,T,w) d(w.Tz)
+a4j0 (p(t)dt+a5j0 o(1)dt
d(z,w) d(z,w) d(w,z)
=alj'0 (p(t)dt+a4_[0 (p(t)dt+a5j0 @(1)dt

d(z,w
= jo( )q)(t)dt =0, a contradiction. Hence, z=w.

Thus 7, and 7, have a unique common fixed point. This completes the proof. o
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Corollary 2.2. Let (X, d ) be a complete metric space. Let a , b, ¢ be non negative real numbers

satisfying a + b + ¢ <1, T, and T, be a pair of self maps of the metric space X into itself such

that for each x,ye X,

y d(x.T; d(x
0 0

Idmﬂz‘) pydt<af o +bf " gty +ef "o
0 0
(2.5)

where @:R" — R" is a Lebesgue-integrable map which is summable, non-negative and such

that .[ quo(t)dt >0 for each £€>0. Then 7, and 7, have a unique common fixed point z€ X .

Proof. Since the contractive condition (2.5) is obviously a special case of (2.1) by setting

a,=c¢ a,=a,a,=b and a, =a; =0, the result follows immediately from Theorem 2.1.0

Corollary 2.3. Let (X , d) be a complete metric space. Let a, b, ¢ be non negative real numbers
satisfying a + b + ¢ < 1, T, and T, be a pair of self maps of the metric space X such that for

eachx,ye X,

d(Tix.Tyy) d(xTy) d(y.Tx) d(x.y)
jo Yot tSajo ’ go(t)dt+bj0 ) ¢(t)dt+cjo "o (t)dt

(2.6)

where @: R" — R" is a Lebesgue-integrable map which is summable, non-negative and such that
j:q)(t)dt > (0for each £>0. Then 7, and T, have a unique common fixed point z€ Z.

Proof. Since the contractive condition (2.6) is also a special case of (2.1) by letting a, =c,
a,=a, a;=band a, =a, =0 the result follows immediately from Theorem 2.1.0

Remark 2.4. We give some remarks which clarify the connection between our results and the

results obtained in [2].

(1) Theorem 1 and 2(cf. [2]) are special cases of Corollary 2.2 and 2.3 respectively with 7, =T7,,
a=bandc=0.

(i1) By taking 7, =T,, Corollary 2.2 and 2.3 reduce Theorem 3 and 4 (cf. [2]) respectively.

(1i1) Theorem 5 (cf. [2]) is a consequence of Theorem 2.1 if we take 7, =T,.
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