COMMON FIXED POINT OF SEMI COMPATIBLE MAPS IN FUZZY METRIC SPACES

¹M. S. Chauhan, ²V. H. Badshah, ³Virendra Singh Chouhan*

¹Department of Mathematics, Govt. Nehru PG College, Agar Malwa (India)

²School of Studies in Mathematics, Vikram University, P.O. Box No. 456010, Ujjain((India)

³Department of Mathematics, S.G.S.I.T.S., Indore (India)

*Corresponding author: darbarvsingh@yahoo.com *Received 21 March, 2009; Revised 3 November, 2009*

ABSTRACT

The purpose of this paper is to prove a common fixed point theorem on fuzzy metric space using the notion of semi compatibility, our result generalize the result of Som [8]. Also, we are giving an example that make strong to our result.

Keywords : Common fixed point, Fuzzy metric space, R- weakly commuting , Semi compatible maps.

AMS Subject Classification : 47H10 , 54H25**.**

INTRODUCTION

It proved a turning point in the development of mathematics when the notion of fuzzy set was introduced by Zadeh [10], which laid the foundation of fuzzy mathematics. Kramosil and Michalek [4] introduced the concept of fuzzy metric space and modified by George and Veeramani [2]. Also Grabiec [3] has proved some fixed point results for fuzzy metric space. Sessa [6] proved some theorems of commutativity by weakening the condition to weakly commutativity. Vasuki [9] defined the R- weak commutativity of mappings of Fuzzy metric space and proved the fuzzy version of Pant's [5] theorem. Cho, Sharma and Sahu [1] introduced the concept of semi compatibility of mapps in D- metric space if condition (a) $Sy = Ty$ implies that $STy = TSy$ and (b) $\{Tx_n\} \rightarrow x$, $\{Sx_n\} \rightarrow x$ then $\{STx_n\} \rightarrow Tx$ as $n \rightarrow \infty$ hold. However (b) implies (a) taking $\{x_n\} \rightarrow y$ and $x = Ty = Sy$. So, here we define semi compatibility by condition (b) only. In this paper we used the concept of semi compatible mappings to prove further resuts.

PRELIMINARIES AND DEFINITIONS

Definitions 2.1.[7] \ast : $[0,1] \times [0,1] \rightarrow [0,1]$ is a continuous *t*-norm if it satisfies the

- following conditions :
- (i) $*$ is associative and commutative,
- (ii) * is continuous.
- (iii) $a * 1 = a \quad \forall \quad a \in [0,1]$
- (iv) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$, for each a, b, c, d \in [0,1].

Definition 2.2.[4] The triplet (X, M, ^{*}) is said to be Fuzzy metric space if X is an arbitrary set, $*$ is a continuous t-norm and M is a Fuzzy set on $X \times X \times [0, \infty] \rightarrow [0, 1]$ satisfying the following conditions : for all x, y, $z \in X$ and s, $t > 0$.

(FM-1) $M(x, y, 0) = 0$,

(FM-2) M(x, y, t) = 1 for all t > 0 if and only if $x = y$,

(FM-3) $M(x, y, t) = M(y, x, t)$

(FM-4) M(x, y, t) * M(y, z, s) $\leq M(x, z, t+s)$,

- (FM-5) $M(x, y, .) : [0, \infty] \rightarrow [0, 1]$ is left continuous,
- (FM-6) $\lim_{t \to \infty} M(x, y, t) = 1.$

Note that $M(x, y, t)$ can be considered as the degree of nearness between x and y with respect to t. We identify $x = y$ with M(x, y, t) = 1 for all t > 0. The following example shows that every metric space induces a Fuzzy metric space.

Example 2.1.[2] Let (X, d) be a metric space. Define $a * b = min\{a,b\}$ and

 $M(x, y, t) = \frac{t}{t + d(x, y)}$ for all $x, y \in X$ and all $t > 0$. Then $(X, M, *)$ is a Fuzzy metric space. It is called the Fuzzy metric space induced by d.

Lemma 2.1. [3] For all x, $y \in X$, $M(x, y, .)$ is a non decreasing function.

Definition 2.3.[3] A sequence $\{x_n\}$ in a Fuzzy metric space $(X, M, *)$ is said to be a Cauchy sequence if and only if for each $\epsilon > 0$, $t > 0$, there exists $n_0 \in N$ such that $M(x_n, x_m, t) > 1$ ε for all n, m $\geq n_0$.

The sequence $\{x_n\}$ is said to converge to a point x in X if and only if for each $\varepsilon > 0$, $t > 0$, there exists $n_0 \in N$ such that $M(x_n, x, t) > 1$ - ε for all $n \ge n_0$.

A Fuzzy metric space $(X, M, *)$ is said to be complete if every Cauchy sequence in it converge to a point in it.

Definition 2.4.[5] Two self maps A and S of Fuzzy metric space (X, M, [∗]) are said to be weakly commuting if

 $M(ASx, SAx, t) \geq M(Ax, Sx, t)$ for every $x \in X$.

The notion of weak commutativity is extended to R-weak commutativity by Vasuki [9] as

Definition 2.5.[9] Two self maps A and S of Fuzzy metric space $(X, M, *)$ are said to be Rweakly commuting provided there exist some positive real number R such that

 $M(ASx, SAx, t) \ge M(Ax, Sx, \frac{t}{R})$ for all $x \in X$.

The weak commutativity implies R-weak commutativity and converse is true for $R \leq 1$.

Definition 2.6. A pair (A, S) of self mappings of a Fuzzy metric space is said to be Semi compatible if $M(ASx_n, Sx, t) \rightarrow 1$ for all $t > 0$ whenever $\{x_n\}$ is a sequence in X such that Ax_n , $Sx_n \to p$ for some p in X as n→∞.

It follows that (A, S) is Semi compatible and $Ay = Sy$ imply $ASy = SAy$ by taking ${x_n}$ = y and $x = Ay = Sy$.

Remark 2.1. Let (A,S) be a pair of self mappings of a Fuzzy metric space (X, M, ∗). Then (A,S) is R-weakly commuting implies (A, S) is Semi compatible but the converse is not true.

 Using R-weak commutativity, Som [8] proved some results. Here we generalized the result of Som [8] by replacing the assumption of R-weakly commuting maps to Semi compatible maps.

Example 2.2. Let $X = [0, 2]$ and $a * b = \min\{a, b\}$. Let $M(x, y, t) = \frac{t}{t + d(x, y)}$ be the standard Fuzzy metric space induced by d, where $d(x, y) = |x - y|$ for all x, $y \in X$, define $A(x) = \{$ 2, x ∈ [0,1] ୶ $S(x) = \begin{cases} x \\ 2 \end{cases}$, $x \in (1,2]$ 1, $x \in [0,1)$ 2, $x = 1$ $x + 3$ $\frac{x+s}{5}$, $x \in (1,2]$ Now for $1 < x \le 2$ we have $Ax = \frac{x}{2}$, $Sx = \frac{x+3}{5}$ $\frac{+3}{5}$ and $ASx = \frac{x+3}{10}$, $SAx = \frac{x+6}{10}$ $\frac{10}{10}$ then M(ASx, SAx, t) = $\frac{10t}{10t+3}$
M(Ax, Sx, $\frac{t}{R}$) = $\frac{10t}{10t+3(2-t)}$ $\frac{10t}{10t+3(2-x)R}$. We observe that M(ASx, SAx, t) $\geq M(Ax, Sx, \frac{t}{R})$ which gives $R \geq \frac{1}{(2-x)}$ Therefore we get there no R for $x \in (1, 2]$ in X. Hence (A, S) is not R-weakly commuting.

Now we have $S(1) = 2 = A(1)$, and $S(2) = 1 = A(2)$ also $SA(1) = AS(1)$ and $AS(2) = 2 = AS(2)$ Let $x_n = 2 - \frac{1}{2}$ $2n$ Hence $Ax_n \rightarrow 1$, $Sx_n \rightarrow 1$ and $ASx_n \rightarrow 2$ Therefore $M(ASx_n, Sy, t) = (2, 2, t) = 1$. Hence (A, S) is Semi compatible but not R-weakly commuting.

MAIN RESULTS

Theorem 3.1. Let S and T be two continuous self mappings of a complete Fuzzy metric space $(X, M, *)$ such that $a * b = min(a, b)$ for all a, b in X. Let A be a self mapping of X satisfying the following conditions:

- (1) $A(X) \subset S(X) \cap T(X)$,
- (2) (A,S) and (A,T) are semi compatible,
- (3) M(Ax, Ay, t) \geq r min{M(Sx, Ty, t), M(Sx, Ax, t), M(Sx, Ay, t), M (Ty, Ay, t)} for all x, $y \in X$ and $t > 0$, where $r : [0, 1] \rightarrow [0, 1]$ is a continuous function such that
- (4) $r(t) > t$, for each $0 < t < 1$. Then A, S, T have a unique common fixed point in X.

Proof: Let $x_0 \in X$ be any arbitrary point.

Since $A(X) \subset S(X)$ then there must exists a point $x_1 \in X$ such that $Ax_0 = Sx_1$.

Also, since $A(X) \subset T(X)$, there exists another point $x_2 \in X$ such that $Ax_1 = Tx_2$.

In general, we get a sequence $\{y_n\}$ recursively as

$$
y_{2n} = Sx_{2n+1} = Ax_{2n}
$$
 and $y_{2n+1} = Tx_{2n+2} = Ax_{2n+1}$, $n \in N \cup \{0\}$.

Let $M_{2n} = M$ (y_{2n+1}, y_{2n}, t) = M (Ax_{2n+1}, Ax_{2n}, t). Then, M (Ax_{2n+2}, Ax_{2n+1}, t) = M_{2n+1}.

Using inequality (3), we get

 $M_{2n+1} \geq r \min\{M(Sx_{2n+2}, Tx_{2n+1}, t), M(Sx_{2n+2}, Ax_{2n+2}, t), M(Sx_{2n+2}, Ax_{2n+1}, t),$

 $M(Tx_{2n+1}, Ax_{2n+1}, t)$ $=$ r min{M(Ax_{2n+1}, Ax_{2n}, t), M(Ax_{2n+1}, Ax_{2n+2}, t), M(Ax_{2n+1}, Ax_{2n+1}, t), $M(Ax_{2n}, Ax_{2n+1}, t)$ $=$ r min(M_{2n} , M_{2n+1} , M_{2n}) (3.1)

If $M_{2n} > M_{2n+1}$, then by definition of r we have

$$
M_{2n+1} \ge r(M_{2n+1}) > M_{2n+1}
$$
, a contradiction. So, $M_{2n+1} \ge M_{2n}$.

Thus, from (3.1), we get $M_{2n+1} \ge r(M_{2n}) \ge M_{2n}$. (3.2)

Hence ${M_{2n}}$ where $0 \le n \le \infty$ is an increasing sequence of positive numbers in [0, 1] and therefore, tends to a limit $L \leq 1$.

We claim that L = 1. If L < 1, then on taking limit $n \to \infty$ in (3.2), we get

$$
L \geq r(L) \geq L;
$$

i.e. $r(L) = L$, which contradicts the fact that $L < 1$.

Hence, $L = 1$.

Now for any positive integer p,

$$
M(Ax_n, Ax_{n+p}, t) \ge M(Ax_n, Ax_{n+1}, \frac{t}{p}) * M(Ax_{n+1}, Ax_{n+2}, \frac{t}{p}) * \dots \dots * M(Ax_{n+p-1}, Ax_{n+p}, \frac{t}{p})
$$

> $(1 - \epsilon) * (1 - \epsilon) * \dots * (1 - \epsilon)$ (p-times) = 1 - \epsilon.

Thus, $M(Ax_n, Ax_{n+p}, t) > 1 - \varepsilon$, $\forall t > 0$.

Hence ${Ax_n}$ is a Cauchy sequence in X. Since X is complete ${Ax_n}$ \rightarrow z \in X. Hence the subsequences ${Sx_n}$ and ${Tx_n}$ of ${Ax_n}$ also tends to the same limit.

Case I. Since S is continuous. In this case we have

 $S Ax_n \to Sz$, $SSx_n \to Sz$

Also (A, S) is semi compatible, we have $ASx_n \rightarrow Sz$

Step I. Let $x = Sx_n$, $y = x_n$ in (3) we get

 $M(ASx_n, A x_n, t)$) $\geq r \min\{M(SSx_n, Tx_n, t), M SSx_n, ASx_n, t), M(SSx_n, Ax_n, t),$

$$
M(Tx_n, Ax_n, t)\}.
$$

Taking limit as $n \rightarrow \infty$,

 $M(Sz, z, t) \ge r \min\{M(Sz, z, t), M(Sz, Sz, t), M(Sz, z, t), M(z, z, t)\}.$

 \geq r M(Sz, z, t),

 $> M(Sz, z, t).$

So, we get $Sz = z$.

Step II. By putting $x = z$, $y = x_n$ we get $Az = z$.

Hence, $Az = z = Sz$.

Case II. Since T is continuous. In this case we have $TTx_n \rightarrow Tz$, $TAx_n \rightarrow Tz$.

also (A, T) is semi compatible $ATx_n \rightarrow Tz$.

Step I. Let $x = x_n$, $y = Tx_n$ in (3) we get

 $M(Ax_n, ATx_n, t) \ge r \text{ Min } (M(Sx_n, TTx_n, t), M(Sx_n, Ax_n, t), M(Sx_n, ATx_n, t),$

 $M(TTx_n, ATx_n, t)$

 $M(z, Tz, t) \ge r \min\{M(z, Tz, t), M(z, z, t), M(z, Tz, t), M(Tz, Tz, t)\}.$

 \geq r M(z, Tz, t),

 $> M(z, Tz, t).$

So, we get $Tz = z$. Thus, we have $Az = Sz = Tz = z$.

Hence z is a common fixed point of A, S and T.

Uniqueness : Let u be another common fixed point of A, S and T, Then

 $Au = Su = Tu = u.$

Put $x = z$, $y = u$ in (3), we get

 $M(Az, Au, t)$ \geq r min ${M(Sz, Tu, t), M(Sz, Az, t), M(Sz, Au, t), M(Tu, Au, t)}.$

Therefore

$$
M(z, u, t) \ge r \min \{ M(z, u, t), M (z, z, t), M(z, u, t), M(u, u, t) \}.
$$

\n
$$
\ge r \min \{ M(z, u, t), 1, M(z, u, t), 1 \}.
$$

\n
$$
\ge r M(z, u, t),
$$

\n
$$
> M(z, u, t)
$$

which gives $z = u$.

Therefore z is a unique common fixed point of A, S and T. If we take $T = S$ then we get following corollary

Corollary 3.2. let S be a continuous mapping of a complete Fuzzy metric space (X, M, $*$) such that $a * b = \min(a, b)$ for all a, b in X. Let A be a self mapping of X satisfying the following conditions:

- (1) $A(X) \subset S(X)$,
- (2) (A, S) is semi compatible,
- (3) M(Ax, Sy, t) \ge r min{M(Sx, Sy, t), M(Sx, Ax, t), M(Sx, Ay, t), M (Sy, Ay, t)} for all x, $y \in X$ and $t > 0$, where $r : [0, 1] \rightarrow [0, 1]$ is a continuous function such that
- (4) $r(t) > t$, for each $0 < t < 1$. Then A and S have a common fixed point in X.

Theorem 3.2. Let S and T be two continuous self mappings of a complete Fuzzy metric space (X, M, *) such that $a * b = min(a, b)$ for all a, b in X. Let A and B be two self mappings of X satisfying the following conditions:

- (1) $A(X) \cup B(X) \subset S(X) \cap T(X)$,
- (2) (A,T) and (B, S) are semi compatible pairs,
- (3) aM (Tx, Sy, t) + bM(Tx, Ax, t) + c M(Sy, By, t)

 $+$ max $\{M(Ax, Sy, t), M(By, Tx, t)\} \le q M(Ax, By, t)$

for all x, $y \in X$, where a, b, $c \ge 0$ with $q < (a + b + c) < 1$. Then A,B, S and T have a unique common fixed point in X.

Proof: Let $x_0 \in X$ be any arbitrary point.

Since $A(X) \subset S(X)$ then there must exists a point $x_1 \in X$ such that $Ax_0 = Sx_1$.

Also since $A(X) \subset T(X)$, there exists another point $x_2 \in X$ such that $Ax_1 = Tx_2$.

In general, we get a sequence $\{y_n\}$ recursively as

$$
y_{2n} = Sx_{2n+1} = Ax_{2n}
$$
 and $y_{2n+1} = Tx_{2n+2} = Ax_{2n+1}$, $n \in N \cup \{0\}$.

Using inequality (3), we get similarly as som [9] that for $\frac{a + b}{q - c} > 1$ a Cauchy sequence in X. Hence, the sequence ${Ax_{2n}}$, ${Bx_{2n+1}}$, ${Sx_{2n+1}}$ and ${Tx_{2n+2}}$ are Cauchy and converge to same limit, say z.

Case I. Since T is continuous. In this case we have

 $T Ax_n \to Tz$, $TTx_n \to Tz$

Also (A, T) is semi compatible, we have $ATx_n \rightarrow Tz$

Step I. Let $x = Tx_n$, $y = x_n$ in (3), we get

aM (TTx_n, Sx_n, t) + bM(Tx_n, ATx_n, t) + c M(Sx_n, Bx_n, t)

 $+$ max $\{M(ATx_n, Sx_n, t), M(Bx_n, TTx_n, t)\} \le qM(ATx_n, Bx_n, t)$

Taking limit as $n \rightarrow \infty$, we get

aM (Tz, z, t) + bM(z, Tz, t) + c M(z, z, t)

+
$$
\max\{M(Tz, z, t), M(z, Tz, t) \le qM(Tz, z, t)\}
$$

i.e., aM (Tz, z, t) + bM(z, Tz, t) + c + M(Tz, z, t)
$$
\leq
$$
 qM(Tz, z, t)

i.e., $c \le (q - a - b - 1) M(Tz, z, t)$

i.e., $M(Tz, z, t) \ge \frac{c}{q - a - b - 1} > 1$

which gives $Tz = z$.

Step II. Putting $x = z$ and $y = x_n$ in (3) we get

$$
aM(Tz, Sx_n, t) + bM(Tz, Az, t) + cM(Sx_n, Bx_n, t)
$$

$$
+ \ \max\{M(Az, Sx_n, t), M(Bx_n, Tz, t)\} \leq qM(Az, Bx_n, t)
$$

Taking limit as $n \rightarrow \infty$, we get

$$
aM(z, z, t) + bM(z, Az, t) + cM(z, z, t)
$$

+ max $\{M(Az, z, t), M(z, z, t)\}\leq qM(Az, z, t)$

i.e.
$$
a + bM(z, Az, t) + c + max{M(Az, z, t), 1} \leq qM(Az, z, t)
$$

i.e.
$$
a + c + 1 \le (q - b) M(Az, z, t)
$$

\ni.e. $a + c + 1 \le (q - b) M(Az, z, t)$

which gives $Az = z$.

Hence, $Az = z = Tz$.

Case II. Similarly since S is continuous and (B, S) is semi compatible we get $Bz = z = Sz$. Thus we have $Az = Bz = Tz = Sz = z$.

Hence z is a common fixed point of A, B, S and T, and easily we can prove that it is a unique common fixed point of A, B, S and T.

REFERENCES

- 1. Cho, Y. J., Sharma, B. K. and Sahu, D. R., 1995. Semi-compatibility and fixed points, *Math. Japonica*, 42(1) 91–98.
- 2. George, A. and Veeramani, P. 1994. On some results in fuzzy metric spaces, *Fuzzy Sets and Systems*, 64, 395-399.
- 3. Grabiec, M., 1988. Fixed points in fuzzy metric spaces*, Fuzzy Sets and Systems* 27, 385-389.
- 4. Kramosil, O. and Michalek, J., 1975. Fuzzy metric and statistical metric spaces, *Kybernetika* 11 1975, 326-334.
- 5. Pant, R. P., 1994. Common fixed points of noncommuting mappings, *J. Math. Anal. Appl*., 188(2) 436-440.
- 6. Sessa, S., 1986. On a weak commutativity condition in fixed points consideration *Publ. Inst. Math* (Beogard),46(2) 149-135.
- 7. Sklar, A. and Schweizer, B., 1960. Statistical metric spaces, *Pacific J. Math*., 10, 314-334.
- 8. Som, T., 2007. Some results on common fixed point in fuzzy metric spaces, *Soochow J. Mathematics,* 33(4) 553-561.
- 9. Vasuki, R., 1999. Common fixed points for R-weakly commuting maps in fuzzy Metric spaces, *Indian J. Pure Appl. Math*. 30, 419-423.
- 10. Zadeh, L.A., 1965. Fuzzy sets, Inform and Control 8, 338-353.