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ABSTRACT
A common fixed point theorem for a pair of weakly compatible mappings is proved in a
cone metric space which extends and improves various well-known similar results.
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INTRODUCTION
The study of common fixed points of mappings satisfying certain contractive conditions
has been at the center of vigorous research activity. In 1976, Jungck [3] proved a common
fixed point theorem for commuting mappings, generalizing the famous Banach contrac-
tion principle. Sessa [8] introduced the notion of weakly commuting maps. Also, Jungck
[4] introduced the notion of compatible mappings in order to generalize the concept of
weak commutativity. Again, Pant [6] defined R-weakly commutating maps and estab-
lished some common fixed point theorems, assuming the continuity of at least one of the
mappings. Kannan [9] proved the existence of fixed point for a mapping that can have
a discontinuity in a domain, however maps involved in each case were continuous at the
fixed point.

Jungck and Rhoades [5] defined a pair of self mappings to be weakly compatible if
they commute at their coincidence points. Then, applying these concepts, several au-
thors have obtained coincidence point results for various classes of mappings in a metric
space. On the other hand, Huang and Zhang [2] generalized the concept of a metric
space, replacing the set of real numbers by an ordered Banach space and obtained some
fixed point theorems for mappings satisfying different contractive conditions. Recently,
Abbas and Jungck [1] proved some common fixed point theorems for weakly compatible
mappings in the setting of a cone metric space.

The aim of this paper is to establish a common fixed point theorem for a pair of
weakly compatible mappings in a cone metric space, without exploiting the notion of the
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continuity. This paper extends and improves various well-known similar results.
The following notions have been used to prove the main result.
Let E be a real Banach space. A subset P of E is called a cone if, and only if
(a) P is closed, nonempty and P 6= {0};
(b) a, b ∈ <, a, b ≥ 0, and x, y ∈ P implies ax + by ∈ P ;
(c) P ∩ (−P ) = {0}.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if,
and only if y − x ∈ P . A cone P is called normal if there is a number K > 0 such that
for all x, y ∈ E, the inequality 0 ≤ x ≤ y implies ‖x‖ ≤ K‖y‖. (1.1)

The least positive number satisfying the above inequality is called the normal con-
stant of P , while x � y stands for y − x ∈ int P (interior of P ).

DEFINITION 1.1.[2] Let X be a non empty set. Suppose that the mapping d :
X ×X → E satisfies
(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if, and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space. The
concept of a cone metric space is more general than that of a metric space.

DEFINITION 1.2. Let (X, d) be a cone metric space. We say that {xn} is
(e) a Cauchy sequence if for every c in E with c � 0, there is N such that for all
n, m > N , d(xn, xm) � c;
(f) a convergent sequence if for every c in E with c � 0, there is N such that for all
n > N , d(xn, x) � c for some fixed x in X.
A cone metric space X is said to be complete if every Cauchy sequence in X is conver-
gent in X.

It is known that {xn} converges to x ∈ X if, and only if d(xn, x) → 0 as n →∞. Also,
the limit of a convergent sequence is unique provided P is a normal cone with normal
constant K (refer Huang and Zhang [2]).

DEFINITION 1.3. Let f and g be self mappings of a set X. If w = fx = gx for some
x in X, then x is called a coincidence point of f and g, and w is called a point of
coincidence of f and g.

DEFINITION 1.4.([5]) Two self mappings f and g of a set X are said to be weakly
compatible if they commute at their coincidence points;that is, if fu = gu for some
u ∈ X, then fgu = gfu.
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PROPOSITION 1.5.([1]) Let f and g be weakly compatible self mappings of a set X.
If f and g have a unique point of coincidence, that is, w = fx = gx, then w is the unique
common fixed point of f and g.

MAIN RESULT
In this section, a common fixed point theorem is proved for a pair of self mappings defined
on a cone metric space under a plane contractive condition.

THEOREM Let (X, d) be a cone metric space, and P be a normal cone with normal
constant K. Suppose that the mappings f, g : X → X satisfy the contractive condition

d(fx, fy) ≤ r[d(fx, gy) + d(fy, gx) + d(fx, gx) + d(fy, gy)]
where r ∈ [0, 1/4) is a constant. If the range of g contains the range of f and g(X) is
complete subspace of X, then f and g have a unique coincidence point in X. Moreover,
if f and g are weakly compatible, then f and g have a unique common fixed point.

PROOF: Let x0 be an arbitrary point in X. Then, since fX ⊂ gX, we choose a point
x1 in X such that f(x0) = g(x1). Continuing this process, having chosen xn in X, we
obtain xn+1 in X such that f(xn) = g(xn+1). Then,
d(gxn+1, gxn) = d(fxn, fxn−1)

≤ r[d(fxn, gxn−1) + d(fxn−1, gxn) + d(fxn, gxn) + d(fxn−1, gxn−1)]

≤ 2r[d(gxn+1, gxn) + d(gxn, gxn−1)].
So, we have

d(gxn+1, gxn) ≤ hd(gxn, gxn−1), with h = 2r
1−2r

.

Now, for n > m, we get
d(gxn, gxm) ≤ d(gxn, gxn−1) + d(gxn−1, gxn−2) + ... + d(gxm+1, gxm)

≤ (hn−1 + hn−2 + ... + hm)d(gx1, gx0)

≤ hm

(1−h)
d(gx1, gx0),

which, using the normality of cone P , implies that

‖d(gxn, gxm)‖ ≤ hm

(1−h)
K‖d(gx1, gx0)‖.

Then, d(gxn, gxm) → 0 as n, m → ∞, and so {gxn} is a Cauchy sequence in X. Since
g(X) is a complete subspace of X, so there exists q in g(X) such that gxn → q, as
n →∞. Consequently, we can find p in X such that g(p) = q. Thus,
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d(gxn, fp) = d(fxn−1, fp)

≤ r[d(fxn−1, gp) + d(fp, gxn−1) + d(fxn−1, gxn−1) + d(fp, gp)],
which, using the normality of cone P , implies that

‖d(gxn, f(p))‖ ≤ Kr‖d(gxn−1, gp)‖ = 0, as n →∞.
Hence, d(gxn, fp) → 0 as n → ∞. Also, we have d(gxn, gp) → 0 as n → ∞. The
uniqueness of a limit in a cone metric space implies that f(p) = g(p).
Again, we show that f and g have a unique point of coincidence.
For this, if possible, assume that there exists another point t in X such that f(t) = g(t).
Then, we have

d(gt, gp) = d(ft, fp)

≤ r[d(ft, gp) + d(fp, gt) + d(ft, gt) + d(fp, gp)],
which, using the normality of cone P , implies that ‖d(gt, gp)‖ = 0, and so, we have
gt = gp. Finally, using the Proposition 1.5, we conclude that f and g have a unique
common fixed point.

This completes the proof of the theorem.

We now give an example to illustrate the above Theorem 2.1.
EXAMPLE 2.2: Let E = I2, for I = [0, 1], P = {(x, y) ∈ E : x, y ≥ 0} ⊂ I2,
d : I × I → E such that d(x, y) = (|x− y|, α|x− y|), where α > 0 is a constant. Define
fx = αx

1+αx
, for all x ∈ I and gx = αx for all x ∈ I. Then, for α = 1, both the mappings

f and g are weakly compatible and satisfy all the conditions of the above theorem with
x = 0 as a unique common fixed point.

REMARK 2.3: The above theorem extends the results of Abbas and Jungck [1]. Also,
it improves the results of Huang and Zhang [2] which itself is a generalization of result
of Kannan [9] and unifies the results of Jungck [3]and Pant [6].
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