Kathmandu University Journal of Science, Engineering and Technology

López-Bonilla et. al., Vol. 13, No. II, December 2017, pp 92-97.

IDENTITIES FOR HARMONIC NUMBERS AND BINOMIAL RELATIONS VIA LEGENDRE POLYNOMIALS

${ }^{1}$ Tuladhar B. M., ${ }^{2}$ López-Bonilla J.*, ${ }^{2}$ López-Vázquez R.
${ }^{1}$ Kathmandu University, Dhulikhel, Kavre, Nepal
${ }^{2}$ ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
*Corresponding author's email: jlopezb@ipn.mx
Received 30 November, 2017; Revised 26 December, 2017

Abstract

We employ the orthonormality of the Legendre polynomials to deduce binomial identities. The harmonic numbers H_{n} are connected with the derivatives of binomial coefficients, this fact allows to deduce identities involving the H_{n}.

Keywords: Legendre polynomials, Schmied's formula, Harmonic and Stirling numbers, Binomial coefficients

INTRODUCTION

Legendre polynomials are given by [1-3]:

$$
\begin{equation*}
P_{n}(x)=\frac{1}{2^{n}} \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n}{k}\binom{2 n-2 k}{n} x^{n-2 k}, \quad n \geq 0 \tag{1}
\end{equation*}
$$

with the property $P_{n}(1)=1 \forall n$, then from (1):

$$
\begin{equation*}
\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n}{k}\binom{2 n-2 k}{n}=2^{n} \tag{2}
\end{equation*}
$$

Besides, we have the orthonormality relation:

$$
\begin{equation*}
\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\frac{2}{2 n+1} \delta_{m n} \tag{3}
\end{equation*}
$$

that is:

$$
\begin{align*}
& \int_{-1}^{1} x^{m} P_{n}(x) d x=0, \quad m<n, \tag{4}\\
& \int_{-1}^{1} x^{n} P_{n}(x) d x=\frac{2^{n+1}}{(2 n+1)\binom{2 n}{n}}=\frac{2^{n+1}(n!)^{2}}{(2 n+1)!}=\frac{2(n!)}{(2 n+1)!!} . \tag{5}
\end{align*}
$$

Kathmandu University Journal of Science, Engineering and Technology

López-Bonilla et. al., Vol. 13, No. II, December 2017, pp 92-97.

If $m-n=$ odd integer then $x^{m} P_{n}(x)$ is an odd function, hence:

$$
\begin{equation*}
\int_{-1}^{1} x^{m} P_{n}(x) d x=0, \quad m-n=1,3,5, \ldots \tag{6}
\end{equation*}
$$

In Sec. 2 we employ (3) and the Schmied's formula [4] to obtain the expression:

$$
\begin{equation*}
\int_{-1}^{1} x^{m} P_{n}(x) d x=\frac{2^{n+1}}{m+1} \frac{\binom{\frac{m+n}{2}}{n}}{\binom{m+n+1}{n}}, \quad m-n=0,2,4, \ldots \tag{7}
\end{equation*}
$$

which implies (5) if $m=n$. We also use (1), (4) and (7) to deduce binomial identities similar to (2).
It is well known the property:

$$
\begin{equation*}
\frac{d}{d x}\binom{x+m}{n}=\binom{x+m}{n} \sum_{j=1}^{n} \frac{1}{j+x+m-n} \tag{8}
\end{equation*}
$$

in particular:

$$
\begin{equation*}
\left[\frac{d}{d x}\binom{x+m}{n}\right]_{x=n-m}=H_{n}, \quad\left[\frac{d}{d x}\binom{x}{n}\right]_{x=-1}=(-1)^{n+1} H_{n} \tag{9}
\end{equation*}
$$

for the harmonic numbers [5]:

$$
\begin{equation*}
H_{n}=\sum_{r=1}^{n} \frac{1}{r}, \quad n \geq 1, \quad H_{0}=0 . \tag{10}
\end{equation*}
$$

In Sec. 3 we employ (8) and (9) to deduce identities involving the quantities (10).

Schmied's Formula

In [4] we find the following relation of Schmied (2005):

$$
\begin{equation*}
x^{m}=\sum_{l=m, m-2, \ldots \ldots} \frac{m!(2 l+1)}{2^{\frac{m-l}{2}}\left(\frac{m-l}{2}\right)!(m+l+1)!!} P_{l}(x), \tag{11}
\end{equation*}
$$

where, we can multiply by $P_{n}(x)$, to integrate in $[-1,1]$, and apply (3), to obtain (7) for

$$
m-n=0,2,4, \ldots
$$

Now we use (1) into (4) and (7) to deduce the result:

Kathmandu University Journal of Science, Engineering and Technology

López-Bonilla et. al., Vol. 13, No. II, December 2017, pp 92-97.

$$
\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{k}\binom{2 n-2 k}{n} \frac{(-1)^{k}}{m+n+1-2 k}= \begin{cases}0, & m<n \tag{12}\\ \frac{4^{n}\left(\frac{m+n}{2}\right)}{(m+1)\binom{m+n+1}{n}}, & m>n\end{cases}
$$

for $m+n=2,4,6, \ldots$ Similarly:

$$
\begin{equation*}
\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{k}\binom{2 n-2 k}{n} \frac{(-1)^{k}}{2 n+1-2 k}=\frac{4^{n}(n!)^{2}}{(2 n+1)!}, \quad n=0,1,2, \ldots \tag{13}
\end{equation*}
$$

Remark- From [6] we have the formula:

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{z+k y}{n}=(-y)^{n}, \quad y \neq 0, \tag{14}
\end{equation*}
$$

which, for $y=-2$ and $z=2 n$ is equivalent to (2) because $\binom{2 n-2 k}{n}=0$ for $k>\left\lfloor\frac{n}{2}\right\rfloor$.

Harmonic Numbers

We have the expression [6]:

$$
\begin{equation*}
x^{n}=\sum_{j=0}^{n} j!\binom{x}{j} S_{n}^{[j]}, \tag{15}
\end{equation*}
$$

where, $S_{n}^{[j]}$ are Stirling numbers of the second kind $[6-8]$. Now (9) and $\left[\frac{d}{d x}(15)\right]_{x=-1}$ imply:

$$
\begin{equation*}
\sum_{j=1}^{n}(-1)^{j} j!H_{j} S_{n}^{[j]}=n(-1)^{n}, \quad n \geq 1 . \tag{16}
\end{equation*}
$$

We can verify (16), in fact [6, 9]:

$$
\begin{equation*}
H_{j}=\frac{(-1)^{j}}{j!} \sum_{q=1}^{j}(-1)^{q} q S_{j}^{(q)}, \tag{17}
\end{equation*}
$$

for the Stirling numbers of the first kind $S_{n}^{(m)}$, then:

$$
\sum_{j=1}^{n}(-1)^{j} j!H_{j} S_{n}^{[j]}=\sum_{q=1}^{n}(-1)^{q} q \sum_{j=q}^{n} S_{n}^{[j]} S_{j}^{(q)}=(-1)^{n} n
$$

by the orthonormality of the Stirling numbers [6]; hence (16) and (17) are reciprocal relations.
Lanczos [10] used the binomial expansion of Gregory-Newton to obtain the identity:

Kathmandu University

Journal of Science, Engineering and Technology

López-Bonilla et. al., Vol. 13, No. II, December 2017, pp 92-97.

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{x}{k}\binom{n}{k} \frac{1}{(k+1)_{m}}=\frac{1}{(n+1)_{m}}\binom{x+m+n}{n}, \tag{18}
\end{equation*}
$$

where, $(k+1)_{m}=\frac{(k+m)!}{k!}$; then (9) and $\left[\frac{d}{d x}(18)\right]_{x=-1}$ allow to deduce the formula:

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{(-1)^{k+1}}{(k+1)_{m}}\binom{n}{k} H_{k}=\frac{1}{(m-1)!(m+n)}\left(H_{m+n-1}-H_{m-1}\right), \quad m \geq 1 . \tag{19}
\end{equation*}
$$

We have the following expression of Graham-Knuth [11]:

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{x+k)}{k}=\left(1+\frac{n}{x+1}\right)\binom{x+n}{n}, \quad n \geq 0 \tag{20}
\end{equation*}
$$

therefore, (9) and $\left[\frac{d}{d x}(20)\right]_{x=0}$ imply the property [12]:

$$
\begin{equation*}
\sum_{k=0}^{n} H_{k}=(n+1) H_{n}-n, \quad n=0,1,2, \ldots, \tag{21}
\end{equation*}
$$

which is a particular case of the identity [9, 11-15]:

$$
\begin{equation*}
\sum_{k=m}^{n}\binom{k}{m} H_{k}=\binom{n+1}{m+1}\left(H_{n+1}-\frac{1}{m+1}\right) \tag{22}
\end{equation*}
$$

for $m=0$.
In [10] we find the relation:

$$
\begin{equation*}
\sum_{k=1}^{n}(-1)^{k}\binom{x}{k} k=(-1)^{n} x\binom{x-2}{n-1}, \quad n \geq 1 \tag{23}
\end{equation*}
$$

thus, (9) and $\left[\frac{d}{d x}(23)\right]_{x=-1}$ generate the result [16]:

$$
\begin{equation*}
\sum_{k=1}^{n} k H_{k}=\binom{n+1}{2}\left(H_{n+1}-\frac{1}{2}\right) \tag{24}
\end{equation*}
$$

which is deductible from [6, 13]:

$$
\begin{equation*}
\sum_{k=1}^{n} k^{m} H_{k}=\sum_{j=1}^{m}\binom{n+1}{j+1}\left(H_{n+1}-\frac{1}{j+1}\right) j!S_{m}^{[j]} \tag{25}
\end{equation*}
$$

for $m=1$.

Kathmandu University Journal of Science, Engineering and Technology

López-Bonilla et. al., Vol. 13, No. II, December 2017, pp 92-97.

We know the expression:

$$
\begin{equation*}
\sum_{k=1}^{n}\binom{n}{k} \frac{(-1)^{k+1}}{k\binom{x+k}{k}}=\sum_{k=1}^{n} \frac{1}{x+k} \tag{26}
\end{equation*}
$$

then, $\left[\frac{d}{d x}(26)\right]_{x=0}$ and (9) allow to obtain the identity:

$$
\begin{equation*}
\sum_{k=1}^{n}\binom{n}{k} \frac{(-1)^{k+1}}{k} H_{k}=\sum_{k=1}^{n} \frac{1}{k^{2}}, \tag{27}
\end{equation*}
$$

which can be verified directly via the relation:

$$
\begin{equation*}
H_{k}=\sum_{j=1}^{k}\binom{k}{j} \frac{(-1)^{j+1}}{j}, \tag{28}
\end{equation*}
$$

consequence from (26) for $x=0$.

REFERENCES

[1] Lanczos C, Legendre versus Chebyshev polynomials, in 'Topics in numerical analysis', Ed. J. J. H.Miller, Academic Press, London, 1973, 191-201.
[2] Lanczos C, Applied analysis, Dover, New York, 1988.
[3] López-Bonilla J, López-Vázquez R \& Torres-Silva H, On the Legendre polynomials, Prespacetime Journal, 6(8) (2015), 735-739.
[4] http://mathworld.wolfram.com/LegendrePolynomial.html
[5] Carvajal-Gámez B E, López-Bonilla J \& López-Vázquez R, On harmonic numbers, Prespacetime Journal, 8(4) (2017), 484-489.
[6] Quaintance J \& Gould H W, Combinatorial identities for Stirling numbers, World Scientific, Singapore, 2016.
[7] López-Bonilla J \& López-Vázquez R, Harmonic numbers in terms of Stirling numbers of the second kind, Prespacetime Journal, 8(2) (2017), 233-234.
[8] Barrera-Figueroa V, López-Bonilla J \& López-Vázquez R, On Stirling numbers of the second kind, Prespacetime Journal, 8(5) (2017), 572-574.
[9] Benjamin A T, Preston G O \& Quinn J J, A Stirling encounter with harmonic numbers, Maths. Mag., 75(2) (2002), 95-103.

Kathmandu University Journal of Science, Engineering and Technology

López-Bonilla et. al., Vol. 13, No. II, December 2017, pp 92-97.
[10] Lanczos C, Linear differential operators, SIAM, Philadelphia, USA, Chapter 1 (1996).
[11] Graham R L, Knuth D E \& Patashnik O, Concrete Mathematics: a foundation for computer science, Addison-Wesley, Amsterdam, 1994.
[12] Greene D H \& Knuth D E, Mathematics for the analysis of algorithms, Birkhäuser, Boston, 1990.
[13] Spiess J, Some identities involving harmonic numbers, Maths. of Comput., 55(192) (1990), 839-863.
[14] Andrews G E \& Uchimura K, Identities in combinatorics IV: differentiation and harmonic numbers, Utilitas Mathematica, 28 (1995), 265-269.
[15] Choi J \& Srivastava H M, Some summation formulas involving harmonic numbers and generalized harmonic numbers, Mathematical and Computer Modelling, 54 (2011), 2220-2234.
[16] Stopple J, A primer of analytic number theory, Cambridge University Press, 2003.

