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ABSTRACT
The central nervous system (CNS) was once considered to be an immune-privileged 
area. However, increasing evidence shows that the central nervous system is not 
an immune-privileged but is an active surveillance site. There is a bi-directional 
communication between the central nervous system and immune system.  
Normally, immune cells migrate into the central nervous system microenvironment 
through choroid plexus and interact with the central nervous system resident cells 
through either through neuromediators or immunomediators. This finding has led 
to a significant interest in neuroimmunological interactions and investigation onto 
the role of the immune system in the pathology of various neurological disorders 
and examine whether it can be targeted to produce novel therapeutic strategies.
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INTRODUCTION
The central nervous system (CNS) is a complex organ system 
consisting of billions of neurons that relay information 
via many billions of synapses. The immense capacity and 
ability to remodel itself in response to experience and the 
environment always fascinate neuroscientists, who believe 
that this organ is the most complicated machine ever 
known to the universe. The ability to receive, retain, recall 
and analyze complex information is a wonderful capacity of 
the nervous system.1

Whether or not the CNS is an immune-privileged site 
has been an intense debate among neuroscientists. The 
concept of an immuno-privileged site was first highlighted 
when allografts in eye and brain tissue were better persisted 

in comparison to other peripheral tissues.2,3 These studies 
demonstrated that the graft showed little rejection in 
comparison to other parts of the body. On the other hand, 
proper neuronal function demands a tight regulation of the 
CNS microenvironment including concentration of different 
ions and other noxious substances.4 For this proper control 
and the normal function of the CNS, the blood brain barrier 
(BBB) plays an important role.5

The BBB lies at the interface of the blood and the brain 
tissue that comprises microvascular endothelium, 
astrocytes, basement-membrane and pericytes.6,7 To 
address the collective terms for the constituents of the 
BBB, the concept of a ‘neurovascular unit’ was proposed 
to emphasize more for the structure and function of BBB 
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integrity.4,5 This unit protects the CNS from fluctuations of 
nutrients, hormones, metabolites and blood constituents 
including endogenous and exogenous compounds.4,8 The 
endothelial cells of the BBB have distinct morphological 
and physiological properties in comparison to other 
endothelial cells of the body.5,6,9 These endothelial cells lack 
fenestration with a tight junction reducing permeability to 
intercellular pathways and they express very low numbers 
of non-specific transporters.6,9,10 Moreover, the highly 
polarized receptors and transporter systems play an 
important role in the movement of nutrients into the CNS 
and the efflux of metabolites or toxic substances into the 
vascular compartment.5,10,11 Furthermore, it has also been 
suggested that pericytes play a major role in maintaining 
the BBB tight junction along with these endothelial cells.12,13 
An in vivo imaging study of mice lacking pericytes showed 
an increase in the permeability of the BBB to water as well 
as low-molecular and high-molecular mass tracers.12 

Hence, the presence of a neurovascular unit, lack of 
conventional lymphatic vessels and limited parenchymal 
expression of major histocompatibility complex (MHC) 
molecules in the CNS along with the limited rejection of 
allografts in the CNS might have led us to consider the CNS 
as a immunologically privileged area.14 However, it is now 
well accepted that the brain can no longer be considered 
immune-privileged. There is increasing evidence for the 
regular communication between the CNS and the immune 
system.15-17 Research has shown that immune cells can enter 
the CNS via the choroid-plexus and reside in perivascular 
spaces or move into the neuropil.18-21 Furthermore, it 
has been shown that the extravasation of these immune 
cells into the CNS involves a very complex set of adhesion 
molecules present on the endothelial cells and on the 
cell surface of these immune cells.20-23 Common adhesion 
molecules that have been suggested to be involved in 
the extravasation of leukocytes include the intracellular 
adhesion molecule (ICAM) family, vascular cell adhesion 
molecule (VCAM), integrins, selectins and the junctional 
adhesion molecule (JAM) family.7,14,24-26 Hence, this 
evidence suggests that the CNS is not an immunologically 
privileged area. Nevertheless, it is also true that the CNS 
is a more immunologically privileged site relative to other 
organs due to the presence of the BBB and tightly regulated 
immune response including limited movement of immune 
cells and expression of death ligand.5,27

Communication between central nervous system and 
immune system

Brain modulation of immune function

The most common way of communication is via humoral 
factors such as cortisol and epinephrine released from the 
hypothalamic-pituitary-adrenal (HPA) axis in response to 
stress with a stressor being anything that stimulates the 
activation of HPA axis and sympathetic nervous system.17,28-30 
Stress can alter antibody secretions as well as the 
release of pro-inflammatory as well as anti-inflammatory 
mediators.31 Most immune cells express receptors for one 

or more hormones associated with HPA and sympathetic-
adrenal-medullary axis and these hormones can regulate 
immune function via these receptors such as inhibition 
of inflammation and shifting production of cytokines 
from Th-1 cells to Th-2 cells, trafficking cells from lymph 
node to peripheral blood, increasing cytokine production 
and maintaining competence of immune cells including 
T cells, B cells and macrophages.29,32-36 It has also been 
demonstrated that mice fail to recover from experimental 
autoimmune encephalomyelitis (EAE) after adrenalectomy 
, which suggests that the HPA axis plays a crucial role in 
modulation of the immune system as inflammation is 
known to be critically involved in the progression of this 
animal model of Multiple sclerosis (MS).37 Moreover, nerve 
fibres present in the lymphoid organs also suggest a bi-
directional communication between the CNS and immune 
system. Recently, it has been demonstrated that stimulation 
of vagus nerve fibres causes acetylcholine release from 
spleenic T cells.38 These nerve fibres act as a link between 
these two systems which relay or receive signals and affect 
the physiological functions (such as antibody secretion and 
cytokines and chemokines release) of the immune cells.38-40 

Immune regulation of brain function

Whilst it is clear that the CNS can influence immunity, 
the immune system also plays a crucial role in normal 
brain development, neuronal differentiation and 
synaptic plasticity.41,42 Furthermore, various cytokines 
and chemokines are able to regulate secretion of 
neurotransmitters in the CNS , with interferons being the 
first cytokines identified to have an effect on neuronal 
function.28,43-47 Cytokines can induce sickness behaviour 
(characterised by fever, reduction in activity and weight 
loss) and also regulate neuroendocrine effects, including 
release of different hormones.48,49 Moreover, cytokines 
including interleukin (IL)-1, IL-2 and IL-6 are also found to 
regulate neuronal functions.28,39,46 IL-1 and IL-6 stimulate 
HPA axis in secretion of corticotrophin-releasing hormones, 
whereas IL-2 can act as a neuroregulatory cytokine in the 
CNS.28,46,50,51 IL-2 can affect the growth and survival of 
neurites, proliferation and maturation of oligodendrocytes, 
growth of microglia and also has effect on behaviour and 
electrocorticogram spectrum.52-55 It has also been shown 
that systemic immunisation in mice caused a decrease 
in neurotransmitter levels in specific regions of the brain 
such as hypothalamus, hippocampus, locus coeruleus, 
supraoptic nucleus and paraventricular nucleus while 
causing an increase in the nucleus tractus solitarius.44,56,57 
From these studies, it is evident that the CNS and the 
immune system communicate with each other via various 
mediators. Furthermore, there are also several studies 
showing a direct interaction between cells of the CNS and 
cells of the immune system.58-60 These immune cells are 
regularly patrolling the CNS and scanning for their cognate 
antigens in healthy as well as in diseased models like 
EAE.19,24,61,62 Details of their movement and functions are 
dealt with in the sections below.
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Movement of lymphocytes in and out of the CNS

As discussed above, there is a continuous communication 
between the CNS and the immune system either via 
various neuromediators / immunomediators or direct 
cell to cell interactions. In direct cell to cell interactions, 
immune cells especially leukocytes migrate into the 
CNS. Three pathways have been proposed for leukocytes 
movement to and from the CNS: i) from blood to cerebro-
spinal fluid (CSF) across the choroids plexus (the site of 
the blood-CSF barrier), ii) from blood to subarachnoid 
space at the pial surface of the brain and iii) from blood to 
parenchymal perivascular space.63 The first two pathways 
seem to be the most relevant under normal physiological 
conditions [64] whereas extravasation by the third pathway 
occurs only during an inflammatory event.19,65-67 Normally, 
lymphocytes (predominantly T lymphocytes) migrate 
through the fenestrated endothelium of the choroid 
plexus stroma, interact with epithelial cells of the choroid 
plexus and enter the CSF at its site of formation.63,68,69 It is 
known that activated T cells express specific chemokine 
receptors which enable them to interact with adhesion 
molecules expressed in the vascular endothelium.14,70,71 In 
this process, only activated lymphocytes can undergo this 
extravasation event, independent of antigen specificity 
as these cells express chemokine receptors which help in 
this extravasation.14,20,22,25,72 This process of extravasation 
requires defined interactions between molecules expressed 
in lymphocytes and endothelial cells of the BBB. These 
discrete steps include interaction between selectins and 
their ligands, integrins and cell adhesion molecules (CAMs), 
chemokines and their receptors, matrix metalloproteinase 
(MMPs) and their tissue inhibitors (TIMPs).

The initial contact between a leukocyte and an endothelial 
cell is referred to as ‘tethering’ and subsequent interactions 
are referred to as ‘rolling’ occur in the peripheral high 
endothelial venules (Fig 1A). These initial events of 
leukocyte recruitment are primarily mediated by the 
interaction between P-selectin glycoprotein ligand-1 (PSGL-
1; expressed by all lymphocytes) and selectins. However, 
the role of endothelial P-selectin in recruiting lymphocytes 
into the CNS is still controversial. Although, some studies 
have suggested that P-selectin has a crucial role in the early 
migration of lymphocytes into the non-inflamed brain, 
others have suggested that there is no role of P-selectin 
in the migration of lymphocytes during inflammatory 
condition within CNS since P-selectin deficient mice 
also develop EAE which is  indistinguishable from wild-
type.64,68,73,74,76-78 The ‘rolling’ of lymphocytes is followed by 
the interaction of α4β1 molecule (α4-integrin) expressed in 
the membrane of lymphocytes with vascular cell adhesion 
molecule (VCAM)-1 expressed on the endothelial surface 
which causes the capture of these lymphocytes.23,79 This 
capturing process allows lymphocytes a sufficient time 
to interact with chemokine ligands (CCL19 and CCL21) 
expressed on the endothelial surface and leads to the 
activation as well as migration of lymphocytes into the 

brain and also causes them to adhere on the endothelial 
surface more firmly.80 At this stage lymphocyte function-
associated antigen (LFA)-1 expressed on the membrane of 
lymphocytes, binds with intercellular adhesion molecule 
(ICAM)-1 or ICAM-2 expressed on the endothelial surface 
causing transendothelial migration of lymphocytes. The 
interaction between LFA-1 and ICAM-1 or ICAM-2 is 
considered to be crucial in the transendothelial migration 
of lymphocytes into the perivascular spaces of the CNS as it 
has been demonstrated that lack of ICAM-1 and ICAM-2 in 
mice fails to recruit lymphocytes into the CNS.81 Moreover, 
it is important to note that lymphocyte recruitment in 
peripheral vascular endothelium is different than their 
recruitment into the perivascular area of the CNS. In the 
peripheral vascular endothelium, as explained above, 
there is a ‘tethering’ and ‘rolling’ of lymphocytes on the 
endothelial surface which is absent in vascular endothelium 
of the BBB (Fig 1B).82 In the vascular endothelium of the 
BBB, there is immediate capture of the lymphocytes 
(predominantly T cells) followed by activation, adhesion 
and transmigration.14

Lymphocytes patrol the CNS regularly and scan for their 
cognate antigens in healthy as well as the inflamed 

Figure 1. Schematic showing the multistep model of lymphcytes 
movement in two different compartments. (A) In the peripheral 
vascular endothelium, the extravasation of lymphocyte starts 
with tethering or rolling followed by activation, adhesion 
and transmigration.(B) At the endothelium of spinal cord, the 
extravasation of lymphocyte starts with direct capture without 
tethering or rolling and followed by activation, adhesion and 
migration into perivascular space. (Adapted from Engelhardt, 
2006).

Fig A

Fig B
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CNS .19,22,61 It has also been demonstrated that during a 
strong systemic immune response, there is an increase in 
lymphocytes (predominantly T cells) number in the CNS.83 

Those T cells which recognise their cognate antigens/MHC 
complex initiate an immune reaction and reside in the CNS 
while those failing to recognise cognate antigens in the 
context of MHC molecules exit from the CNS suggesting 
that the entry of T cells into the CNS is dependent on their 
activation state rather than antigen specificity.22,65,84-87

The interaction between lymphocytes and cells of the 
CNS and antigen presentation usually occurs in the 
perivascular spaces of the brain known as ‘Virchow-Robin’ 
spaces.22,63,88,89 As described previously, the initial entry 
of lymphocytes into the brain is suggested to be via the 
subarachnoid space, and/or the blood-CSF barrier, where 
selectins and adhesion molecules are expressed.63 Antigen 
presentation occurs between lymphocytes and microglial 
cells and also with astrocytes during neurodegenerative 
disease including multiple sclerosis.90-93 Several studies 

have confirmed that microglial cells can express MHC-
II protein and are effective antigen presenting cells.90,91 
Similarly, astrocytes also express MHC-II proteins and can 
act as antigen presenting cells.92,93 Along with these cells, 
dendritic cells and macrophages, the professional antigen 
presenting cells, also help in antigen presentation to 
lymphocytes in the perivascular space.90 Alternatively, it 
has also been shown that neurons interact with T cells via 
B7 ligand in the absence of MHC-II molecules as they do 
not express MHC-II molecules.60

Hence, from all these studies, it is evident that 
communication exists between the CNS and the immune 
system. These two systems are interacting via various 
soluble factors as well as via direct cell to cell contact. 
Further, it is also apparent that these two systems are not 
working independently or are autonomous but working 
together to maintain proper physiological functions. 
However, the precise role of immune system in healthy and 
diseased state of the CNS is still under investigation.
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