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Abstract. Large Language Models (LLMs) have grabbed significant attention from diverse technical fields due to their impressive
performance on a variety of Natural Language Processing (NLP) tasks. Although these models excel in various generative tasks,
they lack the robust reasoning ability required to solve complex mathematics and physics problems. Despite their inherent limi-
tations, Generative Artificial Intelligence (AI) based chatbots, powered by these large language models, are being rapidly adopted
by students in physics and other technical fields. In this project, we assessed the ability of various generative AI-based models
to solve Physics problems. We asked currently popular AI models to solve Physics questions from a final board exam of class
12 of the Higher Secondary Education Board (HSEB) of Nepal. We then evaluated the AI-written solutions by the subject matter
experts. We found that the gpt-4o model by OpenAI performed the best, securing 90% among the models studied. In this paper,
we provide a brief overview of these models and compare their performance as evaluated by a University Physics professor. We
will also discuss the risks and benefits of their use in higher education.
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1. INTRODUCTION

Since the launch of ChatGPT [1] in 2022, Generative AI
models have been adopted and expanded in various tech-
nical fields. These models excel in a range of natural
language processing tasks including content creation, lan-
guage translation, and creative assistance. However, they
severely fall short in reasoning abilities needed for tack-
ling complex mathematical problems. Although they can
produce text mimicking human language, the output may
lack inherent truthfulness. Large language models gener-
ate text by predicting the next word in a sequence based
on the preceding words, making them skilled at identify-
ing language patterns but not at critical thinking or solv-
ing mathematical challenges [2-5].

Although LLMs excel in many generative tasks, these
models can sometimes struggle with certain tasks requir-
ing contextual understanding and common-sense knowl-
edge of the world. It can lead to potentially confident yet
inaccurate responses. Mitigation strategies such as pro-
viding relevant contextual knowledge and using example-

based prompts along with the input query aim to anchor
these models closer to the truth. Despite continuous ad-
vancements, the autoregressive feature of LLM limits
their ability to solve problems requiring deeper contex-
tual understanding. This paper examines a few currently
popular AI models to assess their ability to tackle broader
physics problems and their potential applications in facil-
itating teaching and learning Physics.

Recently, several efforts have examined LLMs’ abil-
ity in various areas, including qualitative answering,
problem-solving, output testing for physics answers, ap-
plication in teaching and learning Physics, and grading:

A. Qualitative Answering:

Gregorcic and Pendrill [6] studied qualitative answer-
ing ability and found that AI chatbots provided linguisti-
cally advanced but inaccurate answers to common physics
questions like "A teddy bear is thrown into the air. What
is its acceleration at the highest point?". The generated
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responses, although linguistically advanced, were incor-
rect and contradictory, indicating that AI chatbots were
not reliable. Another study found that an AI-generated
short-form essay received First-Class grades in a UK
university Physics module. The study suggests that AI
could undermine the reliability of using short-form es-
says as an assessment method in Physics courses [7].
Similarly, Yeadon et al. [8] conducted a comparison of
academic writing quality between human-authored and
AI-generated short-form physics essays submitted be-
fore and after the introduction of ChatGPT. Their analy-
sis, which involved five independent blinded evaluators,
found no statistically significant differences in the scores
between human and AI-generated texts.

B. Problem-Solving:

In the examination of the problem-solving capabilities
of LLMs, Santos [9] found that, while different AI chat-
bots offer benefits in assisted learning, concept com-
prehension, and problem-solving, significant disparities
persist among them. These include inconsistencies and
shortcomings in their problem-solving approaches, high-
lighting the need for ongoing human intervention in AI-
assisted learning. Another study [10] explored Chat-
GPT’s problem-solving capabilities across a spectrum
of tasks, from well-specified problems (where all nec-
essary data was provided) to under-specified real-world
problems (with missing data), revealing a significant per-
formance gap. ChatGPT scored 62.5% on well-specified
problems, but its performance dropped sharply to 8.3% on
under-specified problems. A controlled study [11] com-
paring the problem-solving abilities of physics students
using an internet search engine versus those with unre-
stricted access to ChatGPT found that nearly half of the
solutions provided by ChatGPT were mistakenly assumed
to be correct by students, indicating an overreliance on
the AI. Moreover, students used copy-and-paste to query
ChatGPT in 42% of cases, compared to just 4% when
using search engines, highlighting significant differences
in interaction behavior and a lack of task reflection when
using ChatGPT.

C. Output Testing for Physics Answers:

An assessment of ChatGPT-3.5 and ChatGPT-4 on the
Force Concept Inventory (FCI) to evaluate conceptual
understanding of Newtonian mechanics revealed distinct
differences between the two models. ChatGPT-3.5 per-
formed at a level comparable to that of a university stu-
dent who has completed one semester of college physics,
though its results were uneven and nuanced. In contrast,
ChatGPT-4’s performance approached that of an expert,

indicating a significant improvement in conceptual un-
derstanding [12]. Polverini and Gregorcic’s study [13]
on generating useful output with ChatGPT-4 in the con-
text of introductory physics found that without careful
prompt engineering, LLMs remain unreliable for basic
physics problems, necessitating further model finetun-
ing and training data. While LLM-based chatbots can
generate content useful for critical evaluation, their atyp-
ical responses pose challenges for use in teacher training.
However, framing LLMs as collaborative peers, rather
than authoritative figures, encourages critical assessment
and enhances problem-solving in physics. A study at
the Physics Olympiad (PhO) and Young Physicist Tour-
nament (YPT) found that using chatbots along with ad-
ditional tools like Sage Math effectively addressed the
mathematical shortcomings of chatbots alone. These Re-
trieval Augmented Generation (RAG) tools can guide stu-
dents through complex calculations, provide explanations
for physical phenomena, and suggest various approaches
to problem-solving [14].

D. Application in Facilitating Teaching and
Learning Physics:

Sirnookar et al. [15] conducted a comparative study of
student- and AI-generated responses to a physics prob-
lem, analyzing them through the cognitive lenses of
sensemaking and mechanistic reasoning. This study
revealed that AI’s ability to provide well-structured so-
lutions could be complementary to student’s ability to
effectively leverage representations and refine arguments.
These results suggest the potential for integrating gen-
erative AI into classroom design. Additionally, a study
exploring the application of different AI models in ed-
ucational contexts examined six state-of-the-art LLMs’
explanations of the law of conservation of momentum.
The author states that ChatGPT-4.0 and Coral provided
more comprehensive and technically detailed explana-
tions, making them suitable for advanced discussions,
while Gemini models favored more intuitive approaches,
making them better suited for introductory explanations
[16]. However, it is not clear whether the models were
accessed via chatbot or provider APIs. It should be noted
that the generated answers could be appropriately tuned
with effective prompt design. Kortemeyer used the Jan-
uary 2023 release of ChatGPT (chatbot) to explore its
ability to work through representative assessment of ac-
tual introductory physics course content. The study found
that the chatbot would barely pass the course, as its per-
formance was hindered by unnecessary pre-conceptions
and errors typical of a beginning learner [17].
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E. Grading

Efforts to assess the grading capacity of GPT-3.5-turbo
using zero-shot, in-context learning, and confirmatory
checking-combining chain of thought reasoning with re-
flection showed varied performance: 83.4% on GCSE
questions, 63.8% on A-Level questions, and 37.4% on
university-level questions, with an overall average of
59.9%. These results suggest that AI efficacy diminishes
with more advanced content and complex calculations
[8]. Wan et al. [18] explored GPT-3.5’s (turbo) abil-
ity to provide feedback on student-written responses to
conceptual questions using prompt engineering and few-
shot learning techniques. The study found that students
rated GPT-generated feedback as equally correct but more
useful compared to human-written feedback. They also
found students were unable to distinguish between AI-
generated and human-written feedback. Instructors rated
about 70% of GPT-generated (GPT-3.5 turbo) feedback
as needing only minor or no modifications, indicating the
potential of AI to significantly reduce grading time for
student responses [18].

As AI models continue to gain skills and abilities, their
use in physics teaching and learning activities is becom-
ing increasingly significant. As these tools are integrated
into physics education, both teachers and students must
use them ethically and responsibly. To achieve this, vari-
ous aspects of their use inside and outside the classroom
need to be studied. Stakeholders must recognize the op-
portunities and challenges to make AI truly beneficial for
Physics learning and teaching. To contribute to this effort,
we assessed the physics problem-solving capabilities of
four popular AI models: GPT-4o by OpenAI, gemini-1.0-
pro-latest by Google, mitral-8x7b-instruct by MistralAI,
and llama3-70b-instruct by MetaAI. We compared the
performance of these models and found that GPT-4o by
Open AI was the best performer among all the models we
tested. In this project, we will highlight some common
pitfalls observed during solution generation and propose
remedies for effectively using these models in teaching
and learning physics

2. METHODS

We accessed mitral-8x7b-instruct, and llama3-70b-instruct
via AWS bedrock [19], GPT-4o via OpenAI API [20],
and Google vertex API [21]. We prompted the AI mod-
els to generate solutions for the problem set from the
HSEB model exam for Physics 1021 (2023) [22]. The
problem set covered approximately two multiple-choice
questions and one general question across the following
areas of Physics: Mechanics, Heat and Thermodynamics,
Electricity and magnetism, Modern Physics, and Waves.
We chose the HSEB paper because it includes multiple-

TABLE I. Number of questions and possible scores in each cat-
egory

choice questions and questions with expectations for var-
ious depths of Physics understanding (see Table 1 for
number of questions and possible score in each category).
The problems also assess the ability to solve numerical
problems and theoretical derivations.

To generate the solutions from the AI models in the
zero-shot prompt, we passed the system prompt and
user instruction followed by the actual question to the
model server API without providing any additional de-
tails. The system prompt and the user instruction for
multiple choice questions and general problems are given
in the Appendix. To maintain context and output-length
constraints, solutions were generated one question at a
time, ensuring detailed and focused responses for each
question.

A university physics professor then graded the AI-
written solutions by each AI model as would have been
graded for the students. While grading general ques-
tions, the professor was instructed to award credits for
partial solutions based on the maximum possible score,
depending on the question’s breakdown. For multiple-
choice questions though, either full credit was given for
the correct answer, or no credit for incorrect answer.

In the first iteration of this study, we provided ques-
tions to the models without considering whether they had
multimodal capabilities, i.e., the ability to process and in-
terpret both text and graphical inputs. While models like
GPT-4o and gemini-1.0-pro-latest could handle graphical
inputs, others like mitral-8x7b-instruct and llama3-70b-
instruct lacked this ability. To ensure a fair comparison,
in the second iteration, we restructured some questions
that originally required image or graphical inputs so that
graphical input would not be necessary to correctly an-
swer the question (as shown in Figure 2). In both itera-
tions, we prompted the models in exactly the same way.
It should be noted that the second iteration of the study
provides a fairer comparison among these models.

In both iterations of grading AI written solutions, the
human evaluator assessed the models’ basic understand-
ing of Physics, analytical skills, and mathematical abili-
ties.

60 Chapagain, Malakar and Rimal



The Special Issue of JNPS, ANPA Conference 2024 Can AI Solve Physics Problems?

FIGURE 1. The score obtained by four LLMs models in each
band from the first iteration of grading (multiple choice-blue,
subjective-orange, and aggregate-yellow).

FIGURE 2. Frequency chart of mean PM2.5 concentration in
Worcester from 2010 to 2020, for the months of Summer and
Winter.

3. RESULTS AND DISCUSSION

To compare the performance of open-source models (gpt-
4o and gemini-1.0-pro-latest) and proprietary models
(mitral-8x7b-instruct and llama3-70b-instruct), we draw
the bar diagram of % scores obtained in the objective,
subjective, and aggregate of both in Figure 1. Our anal-
ysis showed that performance on multiple-choice ques-
tions was similar between gpt-4o and gemini. However,
gpt-4o outperformed gemini in both subjective questions
and aggregate success. Between Meta and Mistral, Meta
demonstrated superior performance in all aspects com-
pared to Mistral.

We reconstructed questions so that reading images or
graphical inputs is not essential to fully answer the ques-
tion. One such example is shown in Figure 2. In some
cases, where the reading image is critical, to fully an-
swer the question, we removed the problem entirely so
that each model receives inputs the same way (Figure 3).
This allowed us to better evaluate the capabilities of the
models without being hindered by the limitations of the
models.

The results from the second iteration of grading are
shown in Figure 4. The overall results remained consis-
tent: gpt-4o performed better than Google-gemini, and

FIGURE 3. Scores received by four different language models
in the second iteration of grading.

FIGURE 4. Scores received by four different language models
in the second iteration of grading.

Meta outperformed Mistral. Out of the chosen four mod-
els gpt-4o scored the highest.

In the following section, we will discuss some of the
successes and failures that we encountered while evaluat-
ing the solutions.

A. Where Models Excelled:

a. Handling Definitions and Definitions We observed
that all models excelled in answering problems involving
definitions and derivations of common laws and phenom-
ena. For example, many students find Lenz’s Law con-
fusing, yet all the models provided impressively accurate
answers for it as shown in Figure 5. This suggests that
the models have been extensively trained on such topics,

61 Chapagain, Malakar and Rimal



The Special Issue of JNPS, ANPA Conference 2024 Can AI Solve Physics Problems?

FIGURE 5. Evidence showing that all the models can generate
a near-perfect definition/statement.

leading to consistent and accurate responses in these ar-
eas.

b. Handling Problems Smartly: Some models, such
as GPT-4o, approached question 20(b), which asked to
identify the wavelength of a 275 nm photon correspond-
ing to energy levels 0 eV, -2 eV, -4.5 eV, and -10 eV,
differently than students typically would. Students gen-
erally calculate the energy differences between various
transitions and then determine the corresponding wave-
lengths. However, in this case, the model first calculated
the energy difference corresponding to 275 nm and then
selected the transition between the given energy levels
that matched this energy difference. Similarly, in ques-
tion 15, when tasked with finding the new frequency of
a tuning fork after shortening a 75 cm wire by 0.5 cm in
a sonometer to produce a beat frequency of 3, Meta ap-
proached the problem by first defining the equation based
on the length of the wire, the tension, and the mass per
unit length of the wire. It justified that, since the tension
and mass per unit length remain constant, the frequency is
inversely proportional to the length of the wire, and then
solved the problem accordingly.

B. Common Pitfalls of LLMs:
a. Incorrect Free-Body Diagram:
We observed that some models attempted to generate

free-body diagrams, where necessary but were mostly in-
correct (Figure 6). Understandably, none of these models
had image-generation capabilities at the time.

b. Calculation, Dimensionality, and Unit Errors:
Although the models set up the problems correctly and

took the correct approach, they often struggled with cal-
culation, leading to incorrect answers. This issue was not
isolated to a single model; most models produced answers
with incorrect orders of magnitude, indicating frequent
calculation errors. The models also struggled to keep the
units consistent throughout the solution. They also had
issues with rounding; for instance, an answer that should
have been 447 was rounded to 450, with the unit some-
times being incorrect (Figure 7).

c. Failure to Understand the physical situation:
Another issue is their inability to understand com-

mon sense physical situations. For example, in prob-
lem # 15 (c) about standing waves on the string, they

FIGURE 6. PV diagram of petrol engine (question # 14(a))
generated by GPT-4o at the first and second attempts (a) and
llama3-70b-instruct (MetaAI) with two attempts. Free-body di-
agram generated by llama3-70b-instruct (MetaAI) only (ques-
tion #19) (b).

FIGURE 7. Examples of calculation/dimensional errors.

failed to incorporate the distance between nodes (Figure
8). Occasionally, they demonstrated insufficient back-
ground understanding and neglected the essential facts.
For example, in problem # 15(a), model-mistral solved
the problem. But neglected the factors influencing the
frequency of vibration of a string like the tension and
mass per unit length of the wire, which is not very use-
ful for the students for learning purposes. Some models
such as mistral-initiated problems well, like in the spring-
mass system, consider the mass of the spring initially but
lose consistency in calculations later. This model had
difficulty identifying the second Balmer series and hallu-
cinated in further calculations. Meta, Mistral, and gemini
also struggled with problems requiring adjustments to
given conditions, such as doubling the resistance (Prob-
lem # 17 (b) Last part of Figure 8).

d. Failure to Understand the Problem Context:
The models sometimes completely overlooked the

problem context. For example, in multiple-choice ques-
tion number # 2, when asked for the kinetic energy of bob

62 Chapagain, Malakar and Rimal



The Special Issue of JNPS, ANPA Conference 2024 Can AI Solve Physics Problems?

FIGURE 8. Instances where the models failed to understand the outlying physics correctly.

FIGURE 9. An example where Mistral model came up with the
correct answer 0.044 J but continued further calculation leading
to wrong answer.

at the mean position, Mistral came up with wrong answer
(Figure 9).

The models also struggled to understand the underly-
ing physical theories and knowledge behind the problems.
For example, in question # 19 in Millikan’s oil-drop ex-
periment, they could not correctly formulate the problem
and failed to recognize the physical situation, such as the
effect of an electric field on the particle moving with ter-
minal velocity.

4. CONCLUSIONS

In this paper, we presented a comparative study of dif-
ferent AI models in solving textbook-style long-form
physics questions, similar to those used in HSEB tests in
Nepal. We tested these physics problems on four differ-
ent AI models and found that GPT-4o model performed
the best on our question set. However, these AI models
occasionally struggled with basic calculations. Com-
mon issues included calculation errors, misinterpretation
of physical scenarios, and inconsistent outputs. While
LLMs can generate advanced and creative responses,
they may be factually incorrect, especially with problems
that require critical thinking and mathematical accuracy.
Despite these limitations, we recognize the potential of
AI models to support teaching and learning in general
physics. As these models continue to evolve and gain
new abilities, they present both opportunities and chal-
lenges. This study highlights the importance of carefully
verifying the mathematical accuracy and factual correct-
ness of AI-generated outputs.

Study limitations The models we used do not all pos-
sess the same capabilities, as they vary in the number of
parameters they employ.

Despite the ambitious HSEB syllabus, the problems
are not particularly thought-provoking and primarily as-
sess memorization rather than problem-solving or critical
thinking skills. Some common definition-type problems
may have been encountered by the models during their
training, leading to better performance on those questions.

Although physics solutions are factual, the evaluation
process has an inherent subjective element, which per-
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sonal preferences may influence. Since only one evalu-
ator scored the solutions, we cannot determine how much
the scores might vary across different evaluators.

Future Directions We will repeat the study with re-
cently released versions of the models, which are claimed
to perform better on several AI benchmark tests.

We aim to improve a few shots and step-by-step prompts.
We will increase the number of human evaluators to

assess variations across different evaluators.
We want to test these models with varying question sets

to see whether the failures are persistent.

EDITORS’ NOTE

This manuscript was submitted to the Association of
Nepali Physicists in America (ANPA) Conference 2024
for publication in the special issue of the Journal of Nepal
Physical Society.
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APPENDIX

System Prompt and User Instruction

The input user query becomes
Query for general questions:
general_prompt + "** Question **\n" + question
Query for multiple-choice questions:
mcq_prompt + "\n** Question **\n" + question
+ answer options
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