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ABSTRACT 

Machine Learning (ML) is a tool that finds pattern in data sets for analysis and prediction and is 

very useful in various sectors such as materials discovery, predicting material properties, medi-

cal science, and data science etc. From predicting lattice parameters, stability, band gap, and 

many other material properties with low cost and good accuracy, ML is becoming popular 

among material scientists. Recently, a new compound in a two-dimensional (2D) realm (transi-

tion metal trihalides) is getting immense interest due to its intriguing properties such as magnet-

ic order in lower dimensions. In this work, we have selected transition metal trihalides to pre-

dict band gaps using ML. For the dataset, we have used some compound and elemental proper-

ties extracted from the materials project database and periodic table for the features set, and 

band gaps within the range of 0-3 eV for target variables. We performed the least absolute 

shrinkage and selection operator  (LASSO) for feature selection and selected five features from 

a set of 24 features. After training and testing our data in four types of ML algorithms (support 

vector regression (SVR), kernel ridge regression (KRR), gradient boosted regression tree 

(GBRT), and random forest regression (RFR)), the GBRT model is found to be best with the 

lowest mean absolute error (MAE) < 0.27 eV and root mean squared error (RMSE) < 0.34 eV.  

 

Keywords: Machine Learning, Gradient Boosted Regression Tree, Random Forest Regression, 

Kernel Ridge Regression, Support Vector Regression. 

 

I. INTRODUCTION 

Since the synthesis of Graphene [1], many 2D 

materials have gained immense research interest 

due to their promising applications in the field of 

spintronics, optoelectronics etc. Graphene, 

Transition Metal dichalcogenides (TMDs), 

MXenes, Hexagonal-Boron Nitrides, 2D 

Perovskites are most prominent materials having 

huge number of research conducted. Recently, new 

emerging 2D materials (Transition Metal 

Trihalides) are attracting researchers that has even 

shown intrinsic magnetic properties. After the 

discovery of intrinsic magnetism in Cr2Ge2Te6 [2], 

and CrI3 [3], research interest on transition metal 

trihalides has surged rapidly. Even many works on 

obtaining magnetic properties on layered types of 

materials are in increasing order. Transition metal 

trihalides (MX3, M = transition metals, X = 

halogens) are a layered type of materials such that 

each of three layers are stacked in order of ABC 

with weak Van der Walls interaction between two 

layers [4]. The oxidation number of M is +3 and 

that for X is -1. These materials are mostly found in 

trigonal, hexagonal and monoclinic types of crystal 

systems. Furthermore, many research works have 

been carried out on the compound of type CrX3, 

and VX3, many compounds within this system are 

still unexplored, and many materials are yet to be 

discovered. 

From empirical experiments to computational 

simulation, the advancement of tools and methods 

can be divided into four paradigms. These are also 

known as the four paradigms of material science 

[5–7]. The first paradigm, called empirical science, 

which includes different experimental works to find 

the properties of materials. These are costly and 

time consuming. The second paradigm is called 

model based theoretical science, where different 
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laws have been proposed to find material 

properties. The third paradigm of science is known 

as computational science. The advancement of 

computational tools and simulation based on 

complex theories such as density functional theory 

(DFT) has been a crucial development of tools in 

the field of material science. Due to these 

advancements, a new tool has been emerging in the 

field of material science, known as (big) data-

driven science. In the fourth paradigm (data-driven 

science), ML is taking research in a new path for 

predicting different properties of novel materials. It 

includes discovering new materials as well as 

predicting properties of materials. Realizing about 

pros and cons of different tools, all other tools are 

somehow more costly, and time consuming than 

data-driven science. With the help of different 

statistical methods to analyze the huge amount of 

data, recent research has proven that ML can 

predict properties of different materials with low 

computational cost and less time with good 

accuracy. Rajan et al. [8] used kernel ridge 

regression (KRR), support vector regression (SVR), 

gaussian process regression (GPR), and Bootstrap 

Aggregating Regression algorithms to predict Band 

Gap of Fuctionalized MXene. Among these 

models, they have found that the GPR model 

predicts the band gap with the lowest root-mean-

squared error (RMSE) of 0.14 eV. Furthermore, 

Zhang et al. [9] have worked to predict the band 

gap of Double Perovskites. They used the random 

forest regression model and found that the model 

has predicted band gap with model accuracy of 

85.6% with a root mean square error of 0.64 eV.  

Machine Learning (ML) is a science of 

programming that enables the machine (or 

computers) to act or work by analyzing the given 

data [11]. In particular, the ML algorithm analyzes 

the pattern of the provided data during training and 

predicts unseen data based on the model obtained 

during training [12]. ML further can be divided into 

supervised, unsupervised and reinforcement 

learning. Supervised learning includes learning 

using both features and labels [13], however, in 

unsupervised learning (such as clustering) there are 

no labels for each set of features. Furthermore, 

supervised learning is divided into mainly two 

types of learning [14]: Classification and 

Regression. 

 

 

Fig. 1: Supervised Machine Learning Workflow. Adapted from [10]. 

 

Recently, discovery of van der waals (vdW) 

magnetic materials and finding 2D magnetic 

topological insulators has found to predict using 

ML [15,16], which also include MX3 type of 

compound with various compound configurations. 

Rhone et al. have predicted magnetism and 

thermodynamical stability of A2B2X6 type vdW 

materials combining both DFT and ML. [17] With 

the atomic properties as input and magnetic 

moment, magnetic excitation energy and the 

formation energy as target variables, they have 

predicted several thermodynamically stable 

magnetic vdW materials employing few ML model 

such as kernel ridge regression, extra trees 

regression, and neural network regression. 

However, up to our knowledge prediction of band 
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gap of such compound has not found to observed 

using ML. Prediction of band gap is essential as it 

provides materials electronic behaviors such as 

conductors, semiconductors, and insulators. In 

addition to magnetism, semi conducting properties 

is also essential to apply such vdW materials in 

spintronics applications. Here, we used ML to 

predict band gap of MX3 compounds. We used 

several feature selection techniques such as 

Pearson's correlation coefficient and least absolute 

shrinkage and selection operator (LASSO) 

regression. After feature selection we used several 

ML algorithms to train and test the data, and find 

that GBRT model to be predicted with lowest mean 

absolute error and root mean squared error. 

 

II. METHODS 

A. Data Pre-processing and Feature Engineering  

As ML provides prediction based on the data we 

have provided, the collection of data should be 

done from a standard repository. So for the data 

collection, we have used the  Materials project 

database [18]. First, we have collected all the 

materials of the MX3 system (M = Sc, Ti, V, Cr, 

Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, 

Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg and 

X= (F, Cl, Br, I). After, we included materials with 

band gaps within 0-3 eV range. Further, we have 

only selected compound that either belongs to the 

Trigonal, Hexagonal or Monoclinic Crystal 

systems. A total of 70 compounds, including 

compounds that have both or all of the crystal 

systems has been collected. All the compound 

properties of those materials were taken from the 

Materials Project Database. Furthermore, we also 

have included different properties of elements (such 

as atomic radius, Pauling’s electronegativity etc) 

were obtained from the Periodic Table. Altogether, 

we have collected 24 properties as a feature set and 

band gap as target variables. The band gap we have 

used are Perdew-Burke-Ernzerhof (PBE) band gap 

obtained by using generalized-gradient 

approximation (GGA).  

After the data collection, we worked on feature 

engineering. Feature selection is an important task 

during data pre-processing. The model with a large 

number of feature sets can learn from the noise of 

irrelevant feature sets, thus diminishing the 

performance of the model. It is also important 

because it can mitigate the computational cost of 

the modeling. Various statistical methods are 

known for different types of ML work.  

We have used a LASSO regression [19] method for 

feature selection. This process aims to reduce the 

sum of squared differences (L2 norm) while 

simultaneously applying a regularization technique 

that encourages a reduction in the sum of mean 

absolute differences (L1 norm) on the coefficients 

(β)[8]  

             
 

 
       

 
 ---------------------- (1) 

where,         
 
 and         

 
 are the L1 and L2 

norms, and α is a parameter that controls the 

shrinkage. 

 

 

Fig. 2: The plot of Pearson’s correlation exists between each set of features obtained after lasso and Cook’s distance 

analysis (upper). Outlier analysis using Cook’s distance (lower). 

 

Setting α = 0.01, we have found 11 features with 

non-zero coefficients. Among those features, we 

have picked the top five features. With such, now 

our 24 features set has been reduced to 5 features 
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set. Furthermore, for the detection of outliers within 

data, we have calculated Cook’s distance using a 

Yellowbrick Api [20]. By using a threshold value 

of 4/n, n is the total number of data samples, 

indicated by red dot lines in FIG.2. (lower), we 

have found 4 data samples as an outlier and hence 

removed from the data set. Cook’s distance 

measures the combination of residuals and leverage 

of each data sample that might cost the model 

performance. Detecting and removing outliers will 

help to improve accuracy of ML algorithm. In 

addition, Pearson’s correlation coefficient also has 

been calculated to find the correlation between two 

features in order to neglect features that have  |P| > 

0.85 (P = Pearson's correlation coefficients). 

Having highly correlated data won’t improve the 

model accuracy but might create complexity while 

training the ML algorithm. Hence it is better to 

remove highly correlated inputs from the training 

data sets. Before LASSO regression, we found six 

such features and hence removed them, however, 

after LASSO and Cook’s Distance, we did not find 

any |P| > 0.85 between the remaining five features 

which can be seen on heat map from FIG.2. FIG.3. 

is a Kernel Density Estimation (KDE) plot of 

standardized input feature variables and KDE plot 

of the target variable. The KDE plot here estimates 

the probability density of random variables using a 

Gaussian kernel function.  

After all, we are left with 66 data samples and 5 

features. As of now, our data has been prepared, 

however, we cannot feed the data set to our ML 

model directly. Many ML models need some kind 

of scaling of data that converts input variables 

belonging to a certain range. A standard scaling 

function found in the Sci-Kit Learn library has 

been used for the scaling of the data. Standard 

Scaling scaled the input data as, Xsc = (x−u)/s, 

where u is the mean of the training data sample 

and s is the standard deviation of the training data 

sample. 

Furthermore, a sci-kit-learn train-test splitting 

module has been used to separate 85% of data for 

the training purpose and 15% of the data for testing 

purposes for LASSO regression. In addition, 

splitting 90% of data for the training set and 10% of 

data as a test set using the same module was used 

while fitting the model with all four algorithms.  

B. ML Algorithms 

For the model analysis, we have used four 

regression ML algorithms: kernel ridge regression 

(KRR), support vector regression (SVR), and 

gradient boosted regression tree (GBRT), and 

random forest regression (RFR). KRR [21–24] is a 

supervised ML algorithm which is a combination of 

the kernel method and ridge regression. For the 

prevention of overfitting during training of the 

model, if L2 regularization has been used, it is 

called ridge regression. The L2 regularization 

[25,26] is given by the formula argminw{||Xw − 

y||
2

2 + λ||w||
2
2 }. Where, X is n by d matrix defined  

 

 

Fig. 3: Kernel Density Estimation(KDE) plot for the standardized feature space (upper) and for target variable (lower) 

using Gaussian Kernel. 

 

by Xij = xij (n = number of data points, d = total 

number of features) and y (y1,y2,....,yn) is n-

dimensional vector. λ, a positive parameter, which 

control weight, w, i.e., bigger the λ smaller the  

||w||
2
. Now the kernel method using ridge regression 

maps the samples in a high dimensional space with 

nonlinear mapping and the model learns from the 

training. The predicted value of the target variable 

in the KRR model is obtained as the equation, 

  
 
          

 
  

      -------------------------------- (2) 
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After obtaining α, a n×1 unknown solution vectors, 

provided by solving the equation,   (K + λnI)α = y, 

where K is a kernel matrix build from training data 

set as Kij = Φ(xi,xj) and y is a n×1 regressand input 

vector corresponded to X [21]. Furthermore, talking 

about SVR, the main idea is to find f(x) that must 

have not greater than ε deviation from the actual 

target variables (yi) [24,27]. It is a regression 

generalization of a Support Vector Machine (SVM) 

that forms a nonlinear regression function using the 

kernel method. In general, SVR optimizes the 

problem by finding a convex ε-insensitive loss 

function that must be minimized and hence finding 

the flattest tube that accumulates most of the 

training instances [28]. The main difference 

between KRR and SVR is the loss function used in 

these models. The ε-insensitive region around the 

function is called ε-tube. If the predicted values lie 

inside the tube, the loss is zero, otherwise, the loss 

is equal to the difference between the predicted 

value and the radius of ε tube [29].  

Moreover, we also have used two ensemble types 

of regression models: GBRT and RFR. The 

ensemble method combines the results of the base 

estimators to improve generali- zability over one 

estimator. A GBRT [30,31] is a type of ensemble 

method belonging to a family of boosting methods. 

In this model, the prediction yi for input xi is given 

by the equation below.  

             
 
         ---------------------- (3) 

where hm are estimators known as weak learners, 

and that M refers to an n-estimator parameter. This 

boosting algorithm is also known to be built in a 

greedy fashion as all other boosting algorithms. i.e.  

                     ------------------------ (4) 

Here the newly delivered tree hm is geared up which 

will reduce a sum of losses Lm, given the preceding 

ensemble Fm-1.  

Random Forest Regression [24,32,33] is another 

type of ensemble method belonging to the family of 

averaging methods. It fits a number of decision 

trees in a randomly obtained subset of data [9] and 

finally uses averaging to get more accuracy on 

prediction and to mitigate overfitting.  

For all models, all the parameters were optimized 

using the grid search method found in the sci-kit 

learn library. We also have used 5-fold cross-

validation and after five-fold cross-validation, we 

again searched the parameters for the respective 

algorithm and again fitted the ML model and hence 

predicted the band gap for a test set of data. For the 

ML model accuracy observation, we have 

calculated the, mean absolute error (MAE) and root 

mean squared error (RMSE).  

 

III. RESULTS AND DISCUSSION 

In this work, we have collected some elemental and 

compound properties. All the data were obtained 

from the Materials Project Database and a periodic 

table. After that, we worked on feature selection 

using LASSO regression. The starting number of 

feature (24 features) has been reduced to 5. After 

taking the top five features obtained by using 

LASSO regression, we have also eliminated 

outliers calculated using the cook’s distance. We 

also calculated and plotted the Pearson correlation 

coefficient to observe the correlation between the 

two features. We have eliminated one of each 

correlated feature having correlation coefficients |p| 

> 0.85. Then, we used mainly four ML models, 

SVR, KRR, GBRT, and RFR. Among them, SVR 

and KRR are Kernel based regressions in which the 

main difference is the type of loss function. For the 

kernels, we have used grid search to choose the best 

between radial basis function (RBF) and 

polynomial (Poly). Further, other parameters have 

also been optimized using grid search, best kernels 

and parameters have been used for fitting the 

model. Such a process has been performed two 

times. First, we used five-fold cross-validation, and 

then we fitted the model for prediction. Before 

providing raw data as input, we first separated the 

data set into a train set of data and a test set of data, 

90 % for training and 10 % for testing. 

Furthermore, We have Standardized the data using 

standard scaling as a data pre-processing. The other 

two models, GBRT, and RFR are ensemble types of 

ML models, which worked based on trees. Since 

they are tree-based models normalization of the 

data is not mandatory [34]. We have split the data 

as train and test set, 90 % of data for the training set 

and 10 % of data for the test set. We also optimized 

the parameters of GBRT and RFR using the grid-

search method and then fitted the model with 

optimized parameters.  

From the SVR model, we have predicted the band 

gap for the test set of data with a MAE of 0.37 eV 

and RMSE of 0.49 eV. While, the KRR model 

predicted the target variable with MAE < 0.31 eV, 

and RMSE < 0.38 eV. On comparing the 

performance obtained from two regression models 

that used kernel functions, we got better 

performance from KRR i.e. less MAE and less 
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RMSE from KRR model. Again, the GBRT model 

has predicted the band gap using a test set of data 

with MAE  0.27 eV and RMSE  0.34 eV. 

Finally, we have used RFR and found that this 

model has predicted band gap with MAE  0.34 eV 

and RMSE  0.41 eV. On comparing these two 

ensemble methods of ML, GBRT and RFR, better 

performance was observed from GBRT.  

In summary, we have four models that have 

predicted band gaps with some errors, and the best 

result was obtained from GBRT Model. The 

corresponding feature importance plot using GBRT 

and RFR is shown in Figure 4. Further investigating 

the feature importance plot, we see that in both 

ensemble model, the importance of feature for 

prediction are almost same, however, that of 

electron affinity, atomic radius and van der waal 

radius of transition metal atom is higher in RFR 

model than in GBRT. 
 

IV. CONCLUSIONS 

Our research focuses on leveraging machine 

learning (ML) for predicting materials properties, 

showcasing a growing interest in this field. ML has 

proven instrumental for material scientists, 

accelerating the discovery of novel materials with 

remarkable electronic, magnetic, and notably 

superconducting critical temperatures, all achieved 

in less time with high accuracy. The key to 

achieving precise results lies in the availability of 

extensive and standardized datasets. While some 

researchers rely on high-throughput density 

functional theory (DFT) calculations to generate 

datasets for ML models, our approach involves 

extracting data from a widely recognized standard 

database. 

To enhance model accuracy, various statistical 

methods have been employed in our work. Notably, 

the feature selection process, incorporating 

techniques such as LASSO regression, Pearson's 

correlation, and Cook's distance for outlier detection, 

has proven effective. Additionally, optimizing hyper-

parameters is crucial for improving prediction 

capabilities. In our study, we employed a grid-search 

process to systematically test and identify the best 

parameters among all possibilities. 

In predicting the band gap of MX3, we evaluated 

four ML models with optimized hyper-parameters. 

Our methodology not only underscores the 

importance of robust datasets but also highlights the 

significance of meticulous feature selection, outlier 

detection, and hyper-parameter optimization in 

achieving accurate predictions for materials 

properties which provide good accuracy of 

prediction. TABLE I. shows a summary of the 

performance of ML models. 

 

 

Fig. 4: Feature Importance plot Obtained using GBRT (upper) and Obtained using RFR (below). 
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Table 1: Table of MAE and RMSE obtained from SVR, KRR, GBRT, RFR models  

while predicting band gap for test set of data. 

Models MAE (eV) RMSE (eV) 

SVR 0.37 0.49 

KRR 0.31 0.38 

GBRT 0.27 0.34 

RFR 0.34 0.41 
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