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ABSTRACT 

The model of hard sphere system has important part in modern theories of liquids. Hard sphere 

fluid is considered as the most intensively studied system among all model fluids. The 

thermodynamic and structural properties of real fluids can be studied with the help of hard 

spheres fluid. The exact solution of Ornstein-Zernike (OZ) equation with Percus-Yevick (PY) 

along with the equation of state provides an approximate analytical expression for radial 

distribution function (RDF). This work intends to study the radial distribution function of Hard 

sphere (HS) using the PY approximation for different densities ranging from low to high to find 

out their structural properties, packing behavior, phase transitions, and thermodynamics. We 

use FORTRAN program for this purpose. At low densities, the RDF has a single peak at a 

distance corresponding to the hard sphere diameter, indicating that the particles are well-

separated and not interacting with each other like gaseous. As density increases, the peak 

becomes broader and shifts to smaller distances, indicating that the particles are coming into 

closer contact and interacting more strongly with each other. The height of the peak also 

increases, indicating that there is a greater probability of finding a particle at a certain distance 

from another particle.  

 

Keywords: Hard spheres, Radial distribution function, PY approximation, Ornstein-Zernike, 

FORTRAN. 

 

1. INTRODUCTION 

Hard spheres (HS) fluids are considered as one of 

the most intensively studied system among all the 

model of fluids [1, 2]. The thermodynamic and 

structural properties of hard spheres are known to 

have a high degree of accuracy through the use of 

different computer simulations. The functional as 

well as analytical representation for radial 

distribution function (RDF or g(r)) can be achieved 

from the theoretical aspect. Likewise, from the 

practical point of view, we can obtain the graphical 

representation of g(r) for different range of 

densities and particle-particle separation [3]. The 

study of liquid has wide range of application in 

different fields such including condensed matter, 

biological sciences, and industries. A hard sphere is 

athermal (i.e. no temperature dependence). Hard 

spheres are defined simply as impenetrable spheres 

that cannot overlap in space. The hard sphere 

provides a generic representation that explain 

structure and dynamics of gaseous and liquids [4]. 

Hard spheres fluid is interest of model that explains 

useful reference system in perturbation schemes. It 

is studied by different means, Molecular Dynamics 

(MD) and by experimental study of certain 

colloidal model systems. It also provides a type of 

generic model that explains the dynamics of simple 

liquids [5]. Wertheim [6] used analytical solution of 

Percus-Yevick (PY) integral equation to obtain the 

theoretical result for radial distribution function 

(g(r)). Hard sphere is a model for fluids and solids 

in statistical mechanics. Hard spheres imitate the 

property of repulsion same as the atoms and 

spherical molecular encounter at very close radius. 

The hard sphere systems give a generic model 

which classifies the quasi universal structure and 

fluctuation of simple liquids [7]. A system of hard 

spheres only interacting by hard collision is a 

classical model fluid and is stated by the PY 

equation [8]. Lopez and co-workers explained that 

the hard spheres (HS) plays a major role in the 

application and use of statistical mechanics for the 
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study of the thermodynamics as well as structural 

properties of the real fluids. HS fluid radial 

distribution function, (g(r)) was calculated by an 

analytical method that provides a logical extensive 

solution to get the PY equation with weak physical 

requirements. This method can be used to study the 

structural properties of HS mixtures in the 

metastable region [9]. Henderson described that the 

hard sphere fluid is one of the booming theory of 

liquids. Hard spheres interact via the hard spheres 

potential [10], 

      
     
     

  

Here, d indicates the diameter and r gives the 

separation of the pair of hard spheres. In the HS 

fluid, the Mean Spherical Approximation (MSA) 

and the PY Approximation are similar in nature 

[11]. The PY Approximation theory gives 

analytical solution for the direct correlation 

function (DCF), HS thermodynamics and the 

laplace transform of the radial distribution function, 

(RDF). Ornstein-Zernike (OZ) equation relates the 

direct correlation function (DCF) and radial 

distribution function (RDF) [12]. This OZ equation 

itself does not yield a theory but by combining with 

PY theory gives exact result for HS fluid [10]. An 

approximate analytical expression for the radial 

distribution function, (g(r)) can be obtained from 

the exact solution of Ornstein-Zernike (OZ) 

equation with Percus-Yevick (PY) equation as well 

as from the equation of state [9]. Nowadays, the 

hard sphere radial distribution function can be 

implemented through programming based on 

deterministic computation. The purpose of studying 

radial distribution of hard spheres at different 

densities is to find out their structural properties, 

packing behavior, phase transitions, and 

thermodynamics. It can also serve as a benchmark 

for comparing with theoretical models and 

validating their predictions [13]. It is possible to 

study the structure of a substance through the radial 

distribution function (RDF), which is one of its 

most important characteristics [14]. The radial 

distribution function can be defined as the 

probability of obtaining a particle at definite 

distance from an arbitrary or random central 

particle. It is denoted by g(r) such that "r" gives the 

distance between the particles [15]. An RDF for 

liquid displays the distribution of particles around 

another particle as a reference shows an oscillation 

until a certain distance is reached and then becomes 

unity. It describes the preferred position of one 

particle with respect to another particle [16]. The 

RDF unity level indicates that the atoms at this area 

are not correlated up to a certain distance from the 

reference position [17]. As the radial distribution 

function (RDF) of hard spheres is a measure of the 

probability of finding a particle at a certain distance 

from another particle, given that the particles are 

hard spheres and cannot overlap so that is 

commonly used in statistical mechanics to study the 

properties of liquids and other condensed matter 

systems. The RDF can be helpful to determine the 

thermodynamic properties and the structure of the 

system, such as pressure and density [18]. 

Additionally, it can be used to determine the pair 

distribution function, which can provide details 

about the short-range order in the system. For a 

variety of densities in an equilibrium fluid, and also 

for the metastability region, molecular dynamics 

simulations have been carried out on the radial 

distribution function of hard spheres fluids [19]. In 

order to study the asymptotic and short-range terms 

of the PY solution, it follows that g(r) can be 

predicted to achieve accuracy in the area of the 

nearest neighbors, where "r" is the position of the 

first minimum [3]. The code for generating g(r) 

numerically was provided by Perram [20]. Later on, 

this method was again developed by Chang and co-

workers [21]. 

 

2. METHODOLOGY  

P-Y approximation was defined first by Percus and 

Yevick in 1958 [22]. This approximation is used in 

solving the Ornstein-Zernike (OZ) equation as the 

approximation itself is a closure relation. This 

approximation method is also assigned as the 

Percus-Yevick equation [23]. To acquire the 

expression for the radial distribution function, g(r) 

this approximation can be frequently applied in the 

fluid theory. The radial distribution function, g(r) of 

the HS fluid in the range of densities         
    can be expressed as [3], 

 

       for      ........................................................................................................................................ (1) 

     
 

 
         

 

 
                                   .............................................................. (2) 

       
 

 
                         ................................................................................................. (3) 
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Here, c(r) indicates direct correlation function 

(DCF), ρ denotes number density and   is the 

radius of hard spheres. Above equation carry two 

unknown parameters i.e,              . A closure 

relation represents that there is not all parameters 

that is unknown in the equation of RDF, g(r) are 

independent to each other. In this case, the 

parameters A and B of the depletion region of g(r) 

are uniquely represented as α, β, γ, µ and the 

position of the first minimum      , the 

minimum value   , and the known contact value, 

  
    

 can be expressed as follows [3], 
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Where,              
   

    

Also, we have 

  
    

 
 

  
 
       

 

    
 

   

      
       ...................... (7) 

 

From the comparison of hard sphere problem with 

monte carlo and the density functional theory (DFT), 

the parameters           can be expressed as [24] 

 

                                     ...................................................................................... (8) 

                                          ................................................................................. (9) 

Also, 

                                        ............................................................................. (10) 

                                 ............................................................................................. (11) 

Original Wertheim solution gives the value of parameters           as [6] 
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We have, 

  

 
                          .......................................................................................................... (14) 

                                                          .................................... (15) 

 

3. COMPUTATIONAL DETAILS 

We use FORTRAN programming language for the 

analysis of radial distribution function at different 

densities. With the help of PY approximation, we 

wrote a program in FORTRAN to test the graph of 

radial distribution function,            
 

 
  with 

different values of densities and sigma. 

 A listing of a FORTRAN program with the help of 

above equations gives the exact hard sphere radial 

distribution function. It inverts the Laplace 

transform of Percus-Yevick rg(r) that brings g(r) 

into the agreement with the computer (Monte Carlo 

and Molecular dynamics) results. With the help of 

above formulas, we constructed the FORTRAN 

program and visualize in the graph with the help of 

xmgrace or gnuplot and analyze the radial 

distribution function. 

4. RESULTS AND DISCUSSION  

4.1 Radial Distribution Function of Hard 

Spheres At Low, Medium and High Densities  

In this section, we have presented the main findings 

of the work. From PY approximation, we wrote a 

program in FORTRAN to test the graph of radial 

distribution function,              
 

 
  with 

different values of densities and sigma and obtained 

the different graphs. 

Figure 1 shows the variation of g(r) with distance 

between the particles at low densities ranging from 

0.2 to 0.4. At low densities, the RDF have a single 

peak at a distance corresponding to the hard sphere 

diameter, indicating that the particles are well-

separated and not interacting with each other. For 

densities less than 0.2 i.e.          the radial 

distribution function of hard spheres fluid shifts it’s 
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shape from oscillatory to monotonic shape. The 

inconsistency in the shape or profile of g(r) that 

exceed the experimental errors are noticed with the 

increment of density. 

 

 

Fig. 1: Graph (a), (b) and (c) shows radial distribution function, g(r) vs the reduced distance 
 

 
 for hard spheres at 

densities 0.2, 0.3 & 0.4 (Low). 

 

 

Fig. 2: Graph (a), (b) and (c) shows radial distribution function, g(r) vs the reduced 
 

 
 for hard spheres at densities 0.5, 

0.6 & 0.7 (Medium). 

 

Figure 2 shows the variation of g(r) with distance 

between the particles at medium densities ranging 

from 0.5 to 0.7. As the density increases, the peak 

becomes broader and shifts to smaller distances, 

indicating that the particles are coming into closer 

contact and interacting more strongly with each other. 

Particularly, in the density area            , the 

position of the minimal of        is orderly move 

towards lightly larger separations. Nevertheless, when 

the density increases, for ρσ
3
 > 0.5 the trend is 

reversed. The peak at the pioneer position or first peak 

is the sharpest one indicating the first coordination 

sphere of the liquid. Then, the preceding peaks will be 

occurring roughly in the range of gap or intervals of 

σ but must be smaller than that of pioneer or first 

peak. Liquids do not have exact intervals as they 

are more loosely packed than that of solids. The 

radial distribution function refers to the difference 

in density of adjacent matter due to distance from a 

point. 

 

 

Figure 3: Graph (a) and (b) shows radial distribution function, g(r) vs the reduced distance 
 

 
 for hard spheres at 

densities 0.8 & 0.9 (High). 
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Figure 3 shows the variation of g(r) with distance 

between the particles at high densities 0.8 and 0.9. 

At very high densities, the RDF will become a 

more complex function with multiple peaks, 

reflecting the formation of local structures such as 

crystalline or glassy phases. The hard sphere radial 

distribution function, g(r) displays a typical 

shoulder beyond the densities of 0.9 in which 

roughly random close packing areas begins 

indicating that there is development of amorphous 

or crystalline like structure which is not in the 

principle described by g(r). The hard sphere model 

of liquid shows the repulsive behavior. When atoms 

overlap, this liquid has zero density. Liquids cannot 

maintain a constant structure as it can move in 

dynamical manner and they lose all long-range 

structure. It is important to note that the RDF only 

gives information about the average structure of the 

system, so a more detailed information about the 

local structure is obtained by using other techniques 

such as X-ray diffraction or Molecular dynamics 

simulations. 

 

5. CONCLUSIONS 

In this work, we have studied the RDF of hard 

spheres at different densities ranging from 0.2 to 

0.9 using computational method. From the analysis, 

we observe that the RDF changes with change in 

density of the system of hard spheres as expected. 

At low densities, the RDF have a single peak at a 

distance corresponding to the hard sphere diameter, 

indicating that the particles are well-separated and 

not interacting with each other. As the density 

increases, the peak becomes broader and shifts to 

smaller distances, indicating that the particles are 

coming into closer contact and interacting more 

strongly with each other. The height of the peaks 

also increases, indicating that the probability of 

obtaining a particle at a certain distance from 

another particle is higher. At very high densities, 

the RDF becomes a more complex function with 

multiple peaks, reflecting the formation of local 

structures such as crystalline or glassy phases. 

The estimated radial distribution function, g(r) 

shows a reliable overall agreement with the data 

obtained from simulation. The inconsistency in the 

shape of g(r) that exceed the experimental errors 

are noticed from the increment of density. The HS 

radial distribution function, g(r) displays a typical 

shoulder beyond the densities of 0.9 in which 

roughly random close packing areas begins 

indicating the development of amorphous or 

crystalline like structure. 
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