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ABSTRACT 

The limitation in fossil fuel and the emission of greenhouse gases (GHG) resulting in global 

warming is one of the global challenging issues. Similarly, efficient and cost-effective 

renewable energy resources are always in demand for the overcome of the limitation. One of 

the best alternatives to fossil fuels based on renewable energy sources is hydrogen fuel. The 

main component of the hydrogen fuel generator is the Electrolyzer. Among different types of 

electrolyzers, the incorporation of an anion exchange membrane is one approach. In this work, 

we are focusing on the preparation, characterization, and analysis of anion exchange material 

CaTiO3 used for the electrolyzer. A co-precipitation method was used for the preparation of 

CaTiO3 XRD shows the orthorhombic structure of the CaTiO3. FT-IR shows the vibrational 

spectra of CaTiO3. The particles were spherical and crystalline with an average size of 200 nm 

when viewed through the Scanning Electron Microscope (SEM), Transmission Electron 

Microscopy (TEM), and High-Resolution Transmission Electron Microscopy (HRTEM). The 

SAED pattern verifies the single crystalline nature of the sample. In this way, the CaTiO3, the 

anion exchange agent was synthesized and characterized successfully. 

 

Keywords: Coprecipitation, Oxalate hydroxide, Anion exchange, Electrolyzer, Calcium 

titanate. 

 

I. INTRODUCTION 

Currently, Currently, researchers in the field of 

material science are interested in synthesizing 

various nanosized materials [1]. We are focusing 

our research on energy (Solar [1–3], MXenes [4–6], 

Ferrites [7, 8], etc.) energy storage [9,10] and 

energy-efficient device production with several 

manufacturing approaches. Ceramic materials are 

one of them with their different types. Among 

different types of ceramics, Perovskite [11] belongs 

to a novel class of material with a variety of 

potential technological applications  [12,13]. ABX3 

is the format of Perovskite with larger divalent and 

smaller tetravalent cations A and B respectively 

that are bound with anion X (like O
-2

) as shown in 

Figure 1. Calcium Titanate (CaTiO3) can have 

cubic, tetragonal, and orthorhombic structures  [14] 

with higher dielectric properties that are used in 

wireless communication systems as resonators 

 [15,16]. Wang et al. found Ti- electrodes coated 

with CaTiO3 that are highly resistant to corrosion. 

Higher catalytic efficiency for the production of 

hydrogen through electrolysis is shown by CaTiO3 

doped with Platinum, Zr4+, CoO, etc.  [12,17]. 

Since calcium titanate-based ceramics form a 

number of solid solutions with lanthanides and 

actinides, they find applications in the storage and 

treatment of nuclear wastes  [18,19]. In medicine, 

calcium titanate is highly useful due to its bio-

compatibility and finds applications in fabricating 

materials for bone and joint repair  [12,20]. 

Titanium alloys are widely used as metallic 
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implantable materials and calcium titanate coating 

is an effective method to enhance 

biocompatibility [21] of titanium surfaces  [22]. 

 

 

Fig. 1: Chemical structure of Perovskite. 

 

CaTiO3 can be used for the production of Calcium 

titanate hydroxide (HCaTiO3OH), an efficient 

anion-exchange material  [23]. The exchange of 

anions is attained when CaTiO3 is mixed with base 

NaOH as shown in the following equation: 

CaTiO3+2NaOH+CaCl2 → HCaTiO3OH+2NaCl 

……(1) 

There are various methods for the preparation of 

nano-sized calcium titanate particles, including 

solid-state [24, 25], sol-gel [26, 27], 

hydrothermal [25], co-precipitation  [28], 

mechanical alloying [29], Solvothermal methods 

 [30,31], etc. The co-precipitation method is widely 

used to synthesize ceramic materials since this 

method is simple and the mixing of the reagents 

occurs on an atomic level rather than a particulate 

level. Y.K. Sharma et al. used coprecipitation 

methods mixed metal oxalates for the synthesis of 

transition metal titanates (MTiO3), (M = Mn, Fe, 

Co, Ni, and Cd) by adding transition metal 

chlorides to potassium titanyl oxalate solution  [32]. 

The X-ray Diffractometer (XRD) pattern showed 

that the MTiO3 was not phase pure and contained 

significant amounts of transition metal oxides and 

other impurities  [31]. 

Here, we report the synthesis of calcium titanate 

nanopowder by a novel coprecipitation method in 

the ammoniacal medium using a simple precursor 

potassium titanyl oxalate followed by calcination. 

The structure and morphology of the synthesized 

nanopowder were studied by X-ray Diffractometer 

(XRD), Fourier Transform Infrared (FTIR) 

spectroscopy, High-Resolution Transmission 

Electron Microscopy (HRTEM), Scanning Electron 

Microscope (SEM), and Energy Dispersive X-ray 

(EDX) Spectroscopy techniques.  

 

II. Experimental 

Synthesis of CaTiO3 

20 g potassium titanyl oxalate (C4K2O9Ti) (Sigma 

Aldrich) and 6 g calcium chloride (CaCl2) (Sigma 

Aldrich) were mixed with 250 ml Double Ionized 

(DI) water which is then mixed slowly with 250 ml 

0.2M ammonium oxalate solution (NH4C2O4) in 

ammonium hydroxide to get [CaTi(OH)x(C2O4)y]. 

The solution was maintained at a pH of 9 by adding 

25% ammonia solution and stirring for 2 h on a 

magnetic stirrer. The resulting white slurry was 

kept overnight for aging at room temperature. It 

was then filtered, washed with DI water, and dried 

at 80°C for two days. The dried precipitate was 

ground to a fine powder and was calcined at 900°C 

for 2 h to obtain pure calcium titanate. 

The synthesis procedure of CaTiO3 is shown in 

equation (2). 

 

                   
               
                               

        
               ………………………..(2) 

 

Characterization Techniques 

SHIMADZU, XRD700 powder diffractometer at 

room temperature incorporating Co-Kα radiation 

was used for the determination of the structural 

parameter of the sample under consideration. The 

range of the scan was 20-80° (2θ) in 0.0196° (2θ) 

step. Similarly, the range of 400-4000 cm-1 was 

used for the FT-IR spectrum using the L160000A 

Perkin Elmer instrument. Calcium titanate was 

treated with 2M NaOH for 24 h at room 

temperature (RT) for a hydroxylation reaction. It 

was washed with water, then dried, and recorded 

their FT-IR spectra. JEOL 4000EX High-

Resolution Transmission Electron Microscope 

(HRTEM) operated at 400 kV was used for 

transmitted images. Ion sputtering of gold was done 

over the samples JSM-5600, JEOL Co., Japan was 

used for SEM images followed with EDS. 

 

III. RESULTS AND DISCUSSION 

XRD analysis 

The XRD pattern of CaTiO3 obtained after 

calcination at 900°C of CaTi(OH)x(C2O4)y is 
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shown in Fig.2. The peaks were obtained at 32.7
o
, 

47.1
 o

, 58.9
 o

, and 69
 o

 corresponding to the hkl 

values (121), (202), (123), (242) [15, 19] that 

matched well with Joint Committee on Powder 

Diffraction Standards (JCPDS) No. 22-153  [33, 

34]. The crystal structure shows pure orthorhombic 

perovskite (CaTiO3) powder. The crystallite size of 

the material was calculated using the Debye-

Scherrer formula  [35] as given in equation (3). 

  
    

     
 ……………………………………….(2) 

Where d is the crystallite size, λ is the X-ray 

wavelength, β is the full width at half maxima and θ 

is the Bragg’s angle. From this equation, the 

synthesized material's average crystallite size was 

approximately 200 nm. 

 

 

Fig. 2: XRD pattern of CaTiO3 powder. 

 

FTIR analysis 

 

 

Fig. 3: FT-IR spectrum of mixed oxalate and hydroxide 

of calcium and Titanium (a) before calcination (b) after 

calcinations. 

FT-IR spectra of the sample before and after 

calcination of the sample are shown in Fig. 3 (a-b). 

The peak at 1615 cm
-1

 corresponds to the 

antisymmetric O-C-O stretching vibrations of the 

oxalate, 1315 cm
-1

 to symmetric O-C-O stretching 

vibrations, and 780 cm-1 is related to the in-plane 

O-C-O deformation vibrations, indicating the 

presence of oxalate group in the sample  [36]. 

Spectrum in 3(b) shows the absence of 

characteristic bands of the oxalate group, indicating 

the complete elimination of oxalate after 

calcination at 900°C for 2 h. The absorption band at 

540 cm
-1

 corresponds to specific stretching 

vibrations of Ti-O bonds  [35, 37] and the band at 

450 cm
-1

 is a characteristic feature of Ca-Ti-O 

bending vibrations of calcium titanate  [30]. The 

absence of characteristic vibrations of oxalate after 

calcination at 900°C reveals the formation of pure 

CaTiO3. Similarly, the FT-IR spectrum of calcium 

titanate before and after hydroxylation is presented 

in Fig. 4 (a-b). The two peaks in 4(b) at 540 cm
-1

 

and 450 cm
-1

 in the spectrum of CaTiO3 are related 

to that of Ti-O bonds  [35] and Ca-Ti-O bending 

vibrations  [30] respectively. As seen in Fig. 4(b) 

the 3400-3200 cm
-1

 region is related to stretching 

vibrations of –OH groups of HCaTiO3OH. 

SEM-EDX analysis 

Fig. 5 shows the microstructures like grain size, 

shape, and agglomeration of the CaTiO3 particles 

with the Scanning Electron Microscope (SEM). The 

images show the agglomerated composition of 

spherical particles with a size of 200nm on average. 

EDX spectrum of calcium titanate shown in Fig. 6 

indicates the presence of Ca, Ti, and O atoms in 

accurate proportion in the prepared material. This 

further confirmed the formation of pure CaTiO3. 

 

 

Fig. 4: FT-IR spectrum of calcium titanate (a) before 

hydroxylation (b) after hydroxylation. 
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Fig. 5: SEM images of CaTiO3. 

 

 

Fig. 6: EDX spectrum of CaTiO3. 

 

TEM analysis 

The texture and particle size of CaTiO3 were further 

observed through TEM, HRTEM, and SAED 

patterns as shown in Fig. 7 (a, b), (c), and (d) 

respectively. The nanoparticles in the cluster are 

seen from TEM images of CaTiO3 powders. The 

images show the spherical particle with an average 

size of 200 nm same as that of the SEM image. The  

 

 

Fig. 7: Images of CaTiO3 with (a, b) TEM at 100 nm and 

50 nm (c) HRTEM (d) SAED. 

interplanar spacing 'd' of 0.32 nm is detected from 

HRTEM images in Fig. 7 (c). The crystal planes in 

the form of dotted rings are obtained from the 

SAED pattern of CaTiO3 indicating its freestanding 

single-crystal nature. 

 

IV. CONCLUSIONS 

A co-precipitation method was used for the 

preparation of CaTiO3 in which C4K2O9Ti and 

CaCl2 solution in the presence of NH4OH to form 

precipitating [CaTi(OH)x(C2O4)y] and then 

calcinated. The structure of the CaTiO3 is found to 

be orthorhombic by XRD. FT-IR shows the 

vibrational spectra of CaTiO3. The particles were 

spherical and crystalline with an average size of 

200 nm when viewed through the SEM, TEM, and 

HRTEM. The SAED pattern verifies the crystalline 

nature of the sample. Morphological features 

investigated with SEM, reveal that the CaTiO3 

particles are having a spherical shape with a 

diameter of approximately 200 nm. 
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