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ABSTRACT 

The Schrödinger equation is a fundamental equation in quantum mechanics that describes how 

wave functions evolve over time. The study explored specific focus on the Crank-Nicolson 

scheme, which is widely used and efficient method. By applying these methods to the one-

dimensional Schrödinger equation, the work provided insights into the behavior of these 

systems. To confirm the accuracy and reliability of this method, a test problem is solved. The 

result obtained from numerical method is compared with analytical solution. The graph of 

compared result is shown with the help of computational software. The test demonstrates that 

the method is effective for solving the Schrödinger equation, even when an analytical solution 

is not possible or too difficult to obtain. Overall, the Crank-Nicolson difference scheme is a 

valuable tool for understanding the behavior of quantum systems and solving problems. 

 

Keywords: Schrödinger equation; Wave function; Quantum systems; Crank-Nicolson 

difference scheme. 

 

1 INTRODUCTION 

The Schrödinger equation, proposed by Erwin 

Schrödinger in 1926, is a critical component of 

modern physics and the primary equation used in 

quantum mechanics [12]. It helps physicists 

understand the behavior of matter and energy at the 

atomic and subatomic scale, just as Newton’s laws 

of motion are essential in classical mechanics [14]. 

By studying this equation, researchers have gained 

insights into the properties of matter and energy at 

the quantum level, leading to technological 

advancements in fields such as electronics and 

materials science [20]. The Schrödinger equation is 

also the basis for several critical concepts in 

quantum mechanics, including wave-particle 

duality, the uncertainty principle, and the 

superposition principle. The equation represents the 

wave function of a quantum mechanical system and 

provides probabilistic information about a particle’s 

position and momentum [1, 17]. By modulating the 

wave function, the Schrödinger equation predicts 

the behavior and properties of quantum mechanical 

systems, enabling researchers to study the behavior 

of isolated physical systems at the quantum level 

[5, 7, 14, 15]. 

The Schrödinger equation is crucial in describing 

the behavior of quantum particles in a wide range 

of physical systems [11]. The wave function of a 

particle, represented by the symbol , is used to 

calculate the probability density of its position and 

momentum [1, 14]. When studying quantum 

tunneling phenomena, the Schrödinger equation is 

used to determine the wave function of a particle 

encountering a potential barrier [14]. The shape of 

the barrier and the energy of the particle are used to 

calculate the probability of the particle passing 

through the barrier [15]. If the barrier is thin and the 

particle has enough energy, there is a non-zero 

probability of the particle tunneling through the 

barrier, despite not having enough energy 

classically [22, 25]. The Schrödinger equation is 

important in understanding the wave-like nature of 

particles, which is responsible for quantum 

tunneling. It predicts the probability of a particle 

being on one side of a barrier or another and how 

that probability changes over time [21]. The 
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Schrödinger equation also accounts for the time 

evolution of a particle’s wave function, predicting 

how it changes over time [13]. The Crank-Nicolson 

scheme is used to numerically solve the 

Schrödinger equation, obtaining the time-dependent 

wave function of a quantum system. This method is 

useful for solving partial differential equations and 

provides a stable and accurate solution by 

combining forward-time and backward-time finite 

difference methods [3]. 

At a particular time, the probability amplitude of a 

particle being in a specific state can be represented 

by the time-dependent wave function obtained 

through the application of the Crank-Nicolson 

scheme [12]. This wave function can be used to 

calculate various properties of the quantum system, 

such as the probability density, expectation values 

of observables, and the energy spectrum of the 

system [14]. In comparison to other numerical 

methods such as the forward-time or backward-

time finite difference methods, the Crank-Nicolson 

scheme generally yields a more precise and reliable 

solution to the Schrödinger equation [19]. The 

precision of the computed solution of the 

Schrödinger equation through numerical calculation 

is dependent on the chosen time step and spatial 

grid size [3]. Therefore, the Crank-Nicolson 

scheme can be a useful tool in simulating the 

behavior of quantum systems in various contexts, 

such as in quantum chemistry, condensed matter 

physics, and quantum computing [15]. 

After the development of Quantum Mechanics, 

physicists have conducted various studies and 

research in the field. These studies have utilized 

numerical simulations and various numerical 

approaches to solve the Schrödinger equation and 

investigate the behavior of particles at the quantum 

level [4]. Amin Khan (2022) [14] utilized the 

Crank-Nicolson scheme to solve the Schrödinger 

equation numerically. The goal was to assess the 

effectiveness of the method in obtaining accurate 

results. The results of the study showed that the 

Crank-Nicolson scheme was indeed appropriate for 

obtaining precise solutions to the Schrödinger 

equation. This study was significant in 

demonstrating the utility of the Crank-Nicolson 

scheme in physics research. In contrast, Documet 

(2006) [9] study focused on proposing a condition 

for unconditional stability and presenting an 

alternative approach to transparent boundary 

conditions for Crank-Nicolson finite-difference 

schemes. The goal was to address the challenges 

associated with transparent boundary conditions in 

numerical simulations. The research was crucial in 

providing an alternative solution to the problem of 

transparent boundary conditions and in improving 

the accuracy of numerical simulations. 

Taha (1984) [23] approximated the nonlinear 

Schrödinger equation using various numerical 

approaches such as the classical explicit method, 

hopscotch method, implicit-explicit method, and 

Crank-Nicolson implicit scheme. Delfour et al. 

(1981) [8] described a finite-difference method for 

simulating the Schrödinger equation with power 

non-linearity. Erbe (1994) [12] investigated the 

existence of positive solutions to the equation w" + 

c(t)g(w) = 0 with linear boundary conditions by 

applying the Fixed Point Theorem in cones. To 

sum, these studies illustrate the importance of 

numerical methods and analytical techniques in 

advancing the understanding of complex equations 

and physical phenomena [8, 12, 23]. 

Katsunori (2021) [16] research in 2021 

demonstrated a new formulation of Schrödinger’s 

equation as two real equations, which can be 

rewritten in polar form. This approach reduced one 

equation to the continuity equation, and the other to 

a nonlinear dynamical equation for the probability 

density. This research was significant in providing 

a new understanding of Schrödinger’s equation and 

its behavior, which could lead to new applications 

in various fields. Dongling (2013) [24] investigated 

the stability and convergence of the Crank-

Nicolson difference technique for the coupled 

nonlinear Schrödinger equations with the Riesz 

space fractional derivative. The research aimed to 

determine the effectiveness of the Crank-Nicolson 

method in solving this type of equation. The study 

was significant in advancing the understanding of 

the behavior of the coupled nonlinear Schrödinger 

equations and in identifying a reliable numerical 

method for solving them. In Kalvin (2013) [21], the 

goal was to understand the timing effects of wave 

packet tunneling through a barrier. Non relativistic 

wave packets were used in numerical simulations to 

achieve this aim. The results of the study were 

significant in providing insights into the nature of 

wave packet tunneling and its timing effects. 

Bernard (2014) [10] focused on practical error 

analysis in the context of tunnel effect in a 

rectangular barrier. The research involved 

numerical outcomes, which provided useful 

information on the nature of errors in tunneling 

experiments. This study was important in 

understanding the sources of error in tunneling 

experiments and how to mitigate them. Davies 
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(2005) [6] research indicated that signals faster 

than light have no significant use, as only transit 

duration is measurable. This statement implies 

that although faster-than-light signals may exist, 

their practical utility is limited due to 

measurement constraints. The study was 

important in understanding the limitations of 

faster-than-light signals and their potential 

usefulness. Mohandas (2012) [18] recommended 

the use of the software for the correct calculation 

and plotting of eigen values and eigenvectors in 

potential problems. The computational software 

has proven to be useful in solving complex 

problems in physics, including those involving 

potential problems. 

 

2 CRANK-NICOLSON SCHEME FOR 

SCHRÖDINGER EQUATION 

The mathematical expression of the time dependent 

Schrödinger equation in its standard form is given 

by [19], 

  

  
 

  t
  + k

2 

  x
2  + a | |

2
  + b f(x, t) = 0; x  [p,q], t [0,1]  ..................................................... (1) 

 

Where,  is a complex-valued function depending 

upon x, t and  = –1 .  

 With initial and boundary conditions,  

  (p, t) = 0 (x)  ......................................... (2)  

  (q, t) = 1 (x) .........................................  (3) 

  (x,0) =  (x) ........................................... (4) 

 Where,  is a smooth function, k  0 [7].  

Since, we are considering linear Schrodinger 

equation, i.e , α = 0. Therefore equation (1) reduces 

to,  

 
 

  t
  + k

2 

  x
2  + bf (x, t) = 0  ..................... (5) 

 Where, b is the parameter whose value might 

be positive or negative [15]. 

 

A approach that decreases the overall amount of 

calculation and is acceptable (i.e., convergent and 

stable) for all finite values was originally proposed 

by Crank and Phyllis Nicolson in 1947 [25]. In case 

of finite difference approximations, document [9] 

declare the midpoint (i(x
2
; (j + 

1
2 )  t) satisfied 

the partial differential equation and 
 

2

  x
2  is 

substituted by average of midpoint at j
th
 and (j + 1)

th
 

time levels. 

When k = –1 and b = 0 equation (5) takes the form, 

  
 

  t
  - 


2 

  x
2 = 0 ........................................ (6) 

 








 


  t
  
 i‚  ‚j + 

1

2
 
  = 









2


  x
2  

 i‚  ‚j + 
1

2
 
 

 

Apply forward difference in time j and central difference scheme in space i, we get 

  
 i‚j +1 –  i‚j

 t
  = 

1

2
  






 i – 1‚j – 2i‚j + i + 1‚j

 (x)
2  + 

i–1‚ j+1 – 2i‚j +1 + i +1‚ j+1

 (x)
2   

After simplification, 

 2 (i, j +1 – i, j) = 
t

 x
2  (i –1,j – 2i, j + i + 1,j + i –1, j + 1 – 2i, j+1 + i + 1, j+ 1)  

 Let  
t

 (x)
2  = α  

Then, equation (7) takes the form,  

 2i, j +1 – 2i, j = αi–1, j – 2αi, j + αi + 1, j + αi–1, j + αi–1, j+1 – 2αi, j+1 + αi + 1, j + 1  

 Where, i = 1, 2, ..., N – 1 and j = 0, 1, 2, ... , M. .......................................................................... (8) 

 

To solve above equation we use following constraints,  

where,  i = 1, 2, ... , N    

 i, j = 1(tj) 

  N,j = 2(tj)  
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where j = 0, 1, ... , M  

Moreover, arranging equation (8) 

–αi + 1, j + 1 +2αi, j + 1 + 2i, j + 1 – αi + 1, j + 1 =  α i – 1, j – 2αi, j 2i,j + αi + 1,j  

– αi – 1, j + 1 + 2( + α) i, j +1 – αi +1, j + 1 = αi – 1, j + 2( – α) i, j + αi + 1, j  ................................... (9) 
 

Suppose there are N internal mesh points along every row of time, i.e., j = 0 then i = 1,2, ....., N – 1. Thus 

we get N – 1 simultaneous equations for N–1 unknown values along the initial row, initial and boundary 

values are pre-defined.           

  

For i = 1,  

 –α 0,1 + 2( + α) 1,1 – α 2,1 = α  0,0  + 2( – α) 1,0 + α2,0 

In general, for i = N – 1,   

 – α N –2, 1 + + 2( + α) N –1,1 – α N,1 = α  N–2,0  + 2( – α) N –1,0 + αN,0 

 

All these simultaneous equations can be written in matrix form,  











2( + )

–
0
0
.
.
0

    

–

 2( + )

–
.
.
 .
.

    

0

 –

 2( + )
.
.
.
 .

  

.

.

– 
 .
.
.
 .

    

.

.

.

2( + )
.
.
.

      

.

.

.

–
.
.

 –

      

0
0
0
.
.
.

 2( + )

  











1‚ j+1

 2‚ j +1

 3‚ j + 1

 .

 .

 N–2‚ j + 1

 N – 1‚ j + 1

  

= 











2( – )



0
0
.
.
0

    



 2(– )



.

.
 .
.

    

0

 
 2(– )

.

.

.
 .

  

.

.

 
 .
.
.
 .

    

.

.

.

2(– )
.
.
.

      

.

.

.



.

.

 

      

0
0
0
.
.
.

 2(– )

   











1‚ j

 2‚ j

 3‚ j

 .

 .

 N – 2‚ j

 N – 1‚ j

 + 









α0‚j + α0‚j+1

 0

 .

 .

 .

 αN‚j + αN‚j+1

  ...(10) 

 

Above equation in simplified form is, AVj + 1 = NVj  +  Pj ............................................................................ (11)  

Where, 

 

 











2( + )

–
0
0
.
.
0

    

–

 2( + )

–
.
.
 .
.

    

0

 –

 2( + )
.
.
.
 .

  

.

.

– 
 .
.
.
 .

    

.

.

.

2( + )
.
.
.

      

.

.

.

–
.
.

 –

      

0
0
0
.
.
.

 2( + )

   

 N = 











2( – )



0
0
.
.
0

    



 2(– )



.

.
 .
.

    

0

 
 2(– )

.

.

.
 .

  

.

.

 
 .
.
.
 .

    

.

.

.

2(– )
.
.
.

      

.

.

.



.

.

 

      

0
0
0
.
.
.

 2(– )
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 Pj = 









α0‚j + α0‚j+1

 0

 .

 .

 .

 αN‚j + αN‚j+1

 , vj+1 =











1‚ j+1

 2‚ j +1

 3‚ j + 1

 .

 .

 N–2‚ j + 1

 N – 1‚ j + 1

 , vj = 











1‚ j

 2‚ j

 3‚ j

 .

 .

 N – 2‚ j

 N – 1‚ j

  

 Equation (11) can be solved for Vj 

  Vj+1 = A
–1

N Vj + A
–1

Pj  

 Therefore,  

  Vj+1 = RVj + Sj 

 where R = A
–1

 N and Sj = A
–1

Pj. Likewise we can find V1,V2, V3, . . . , Vm and M = jt. 

 

3 NUMERICAL SOLUTION OF SCHRÖDINGER EQUATION 

We solve the following Schrödinger equation by Crank-Nicolson Method [14, 15]: 

  
 u

  t
  = 


2 
u

  x
2  subject to the boundary condition 

u(x, 0) = sin x, – 2  x  2, and u( –2, t) = – e
t
 sin 2 u(2, t) = e

t
 sin(2) 

  

 Let h = 0.2 and l = 0.8, so that 

  = 
α

2
l

h
2   = 

–(0.04)

(0.8)
2   = 0.3135  

 For  = 1, Crack-Nicolson Formula  

 –u
k+1

 i –1
 + (2 + 2)u

k+1

i
  –u

k+1

 i +1
  = u

k

 i –1
  + (2 – 2) u

k

 i 
 +  u

k

i +1
    

becomes  

0.3125 u
k + 1

j –1
 +(2–0.625) u

k+1

j
 +0.3135 u

k+1

j + 1
 =– 0.3135 u

k

j–1
 +(2 + 0.625) u

k

 i 
 – 0.3135 u

k

 i+1 
 …(12) 

 Putting k = 0 in (12), we obtained  

0.3125 u
1

 j–1
  + (2–0.625) u

1

 j 
 +0.3135 u

1

 j+1 
 = – 0.3135 u

0

 j – 1 
 +(2+0.625) u

0

 i 
 –0.3135 u

0

 i + 1 
  .................(13) 

 

Corresponding to i = 1, 2, 3 and 4  

0.3125 u
1

 0 
 + (2 – 0.625) u

1

 1 
 + 0.3125 u

1

 2 
  = –0.3125 u

0

 0 
 + + (2 + 0.625) u

0

 1 
  – 0.3125 u

0

 2 
  

0.3125 u
1

 1 
 + (2 – 0.625) u

1

 2 
 + 0.3125 u

1

 3 
  = –0.3125 u

0

 1 
 + + (2 + 0.625) u

0

 2 
  – 0.3125 u

0

 3 
  

0.3125 u
1

 2
 + (2 – 0.625) u

1

 3 
 + 0.3125 u

1

 4
  = –0.3125 u

0

 2 
 + + (2 + 0.625) u

0

 3 
  – 0.3125 u

0

 4 
  

0.3125 u
1

 3 
 + (2 – 0.625) u

1

 4 
 + 0.3125 u

1

 5 
  = –0.3125 u

0

 3 
 + + (2 + 0.625) u

0

 4 
  – 0.3125 u

0

 5
  

We have  

 u(x,0) = Sinx 

But   

 u(jh,kl) = u
k

 j 
    u

0

 i 
 = u(–2 + jh, 0) = sin jh = sin(–2 + 0.8j)  

Putting j = 0, 1, 2, 3, 4. Therefore,  
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  u
0

0
 = –0.9093, u

0

 1 
 = – 0.9320, u

0

 2 
  = – 0.3894,  u

0

 3 
  = 0.9320, u

0

 4 
  = 0.9093 

 u(–2,t) = –e
iotat

 sin2 = –(cost + sint)sin2  

 u
0

0
 = u(–2,0) = – (cos0 + sin0) sin2 = –0.9093  

 u
1

0
 = u(–2,0.2) = –(cos0.2 + sin0.2) sin(2) = –0.8912 – 0.1807  

and  

 u(2,t) = e
iotat

 sin2 = (cost + sint) sin2  

 u
1

0
 = u(2,0) = (cos0 + sin0) sin2 = 0.9093  

 u
1

0
 = u(2,0.2) = (cos0.2 + sin0.2) sin(2) = 0.8912 + 0.1807 

Therefore, above system become 

 (2 + 0.625) u
1

1
 + 0.3125 u

1

2
 = –1.9204 + 0.7098  

 0.3125 u
1

2
 + (2 – 0.625) u

1

2
 + 0.3125 u

1

3
 = –0.7788 – 0.2434  

 0.3125 u
1

3
 + (2 – 0.625) u

1

3
 + 0.3125 u

1

4
 = 1.5798 + 0.7042  

 0.3125 u
1

3
 + (2 – 0.625) u

1

4
 = 1.9204 – 0.2643  











(2 +0.625)  0.3125  0  0

 0.3125  (2 – 0.625)  0.3125  0

 0  0.3125  (2 – 0.625)  0.3125

 0  0  0.3125  (2 – o.625)

    











u

1

1
 

 u
1

2
 

 u
1

3
  

 u
1

4
 

   =   









–1.9204+ 0.7098

 – 0.7788 – 0.2434

 1.5798 + 0.7042

 1.9204 – 0.2643

   

or, Ax = B .................................................................................................................................. (14) 

Where  

A = 











(2 +0.625)  0.3125  0  0

 0.3125  (2 – 0.625)  0.3125  0

 0  0.3125  (2 – 0.625)  +0.3125

 0  0  0.3125  (2 – o.625)

 x = 











u

1

1
 

 u
1

2
 

 u
1

3
  

 u
1

4
 

    

B = 









–1.9204+ 0.7098

 – 0.7788 – 0.2434

 1.5798 + 0.7042

 1.9204 – 0.2643

    

And  

A
-1

 = 









0.4458 – 0.1239

0.008 – 0.0684

– 0.0096 – 0.0028

 –0.008 + 0.0012

    

– 0.008 – 0.0684

0.4394 + 0.1317

0.0369 – 0.0561 

 0.0063 –0.0078  

 

–0.0096 – 0.0028

 0.0369 – 0.0561

 – 0.4427 + 0.1267

 0.0377 – 0.0574  

 

– 0.0008 + 0.0012

 –0.0063 – 0.0078

  0.0377 – 0.0574

  0.4490 + 0.1344 

  ……….(15) 
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Using X = A
– 1

 B we get  

 











u

1

1
 

 u
1

2
 

 u
1

3
  

 u
1

4
 

  = 









– 0.7879 + 0.6287

 – 0.1765 – 0.1546

 0.6455 + 0.4249

 1.0016 + 0.0799

   ..................................................................................... (16) 

 

Above example shows manual calculation of a 

Schrödinger equation by Crank-Nicolson method. 

This method is long, very difficult to solve if 

number of partitions is more. So, we solved similar 

problem by using computational software and the 

obtained result is shown below. 

 

4 RESULT AND DISCUSSION 

The Schrödinger equation in one-dimension is, 

 
 u

  t
  = 


2 
u

  x
2  

subject to the boundary condition. 

u (x; 0) = sin x, –4  x  4, and u (–4, t) = –e
 tt

 sin 2 

u (4, t) = e
 tt

 sin (4). 

 

We compare computational and analytical solutions 

with variation of length taking the value of each t 

fixed at t = 0.2. The 2D figure shows that 

computational solution obtained using Crank-

Nicolson scheme is very close to analytical 

solution. 

4.1 Real Part of the Solution 

In Fig. 1A, x-axis represents x, y-axis represents real 

part of u and in Fig. 1B, x-axis represents x, y-axis 

represents time and z-axis represents real part 

solution. The graph Fig.1A between exact and 

approximate solution of a Schrödinger equation in 

real solution shows that applied method tends to the 

exact solution. The result obtained from Crank-

Nicolson scheme is near and equals to exact solution. 

The mesh plot can be visualized as a three-

dimensional surface that evolves in time. The shape 

of the mesh plot can provide insights into the 

behavior of the particle. The x-axis represents x, the 

y-axis represents time, and the z-axis represents the 

real part of u. The Fig. 1B represents surface plot 

for the position of a particle in a one-dimensional 

Schrödinger equation. The amplitude of the wave 

function is displayed as a function of position and 

time, where higher amplitudes indicate a higher 

probability of finding the particle at that position. 

The peaks and troughs in the mesh plot represent 

regions where the particle is more or less likely to 

be found, respectively. 

 

 
 (a) (b) 

 

Fig. 1: (a) Comparison of approximate(red) and exact (dotted black) solution in case of real at h = 0,2,l = 0,8 and t = 

0,2. and, (b) Surface plot of real part of the solution. 

4.2 Imaginary Part of the Solution 

In Fig. 2A, x-axis represents x, y-axis represents 

imaginary part of u and in Fig. 2B x-axis represents 

x, y-axis represents time and z-axis represents 

imaginary part of solution. By comparing 

imaginary part of the solution of Schrödinger 

equation we can conclude that exact and 

approximate imaginary solutions are about to 

coincide with evidence Fig. 2A. And analyzing the 

surface plot of the imaginary solution Fig. 2B, we 
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can gain information about the momentum of the 

particle at different positions and times. For 

example, if the mesh plot displays a region of high 

probability current density in one direction and a 

region of low probability current density in the 

opposite direction, this could indicate that the 

particle has a net momentum in the first direction. 

Furthermore, the mesh plot of the imaginary 

solution can also provide information about the 

energy of the particle. Similar to the mesh plot of 

the real solution, a periodic pattern in the mesh plot 

of the imaginary solution can indicate that the 

particle has a quantized energy. 

 

 
 (a) (b) 

 

Fig. 2: (a) Comparison of approximate (red) and exact (dotted black) solution in case of imaginary at  

h = 0:2, l = 0:8 and t = 0:2. and, (b) Surface plot of imaginary part of the solution. 

 

5 CONCLUSION 

The work is detail about the application of Crank-

Nicolson scheme in Schrödinger equation. The 

study explored the Crank-Nicolson scheme, which 

is a widely used and efficient method for solving 

the Schrödinger equation. By applying finite 

difference method to the one-dimensional 

Schrödinger equation the work provided insights 

into the behavior of these systems. The results 

obtained from the computational software were 

presented through graphs, which were clear and 

informative, highlighting the salient features of the 

solutions. The work mainly focuses on comparison 

of approximate and exact solution. The explanation 

was aided by the use of graphs, which helped to 

make the concept more accessible and the Crank-

Nicolson method was shown to be effective. 

Overall, the work provided a thorough 

understanding of the Schrödinger equation and the 

Crank-Nicolson method, making both a valuable 

contribution to the field. 
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